共查询到20条相似文献,搜索用时 32 毫秒
1.
Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma
下载免费PDF全文

A. Ochi H. Konishi S. Ando K. Sato K. Yokoyama S. Tsushima S. Yoshida T. Morikawa T. Kaneko H. Takahashi 《Plant pathology》2017,66(1):67-76
The control of seedborne rice seedling diseases in the seed beds is important to avoid epidemics in rice nurseries and paddies, which may result in severe yield loss. Recently, irradiation with plasma containing electrons, creating positive or negative ions and neutral species, has been shown to have an antimicrobial effect, probably via generation of reactive oxygen species. This study examines whether two seedborne rice seedling diseases, bakanae disease caused by the fungal pathogen Fusarium fujikuroi, and bacterial seedling blight caused by Burkholderia plantarii, are suppressed by irradiation of infected rice seeds with atmospheric plasma. Seed germination and seedling growth were not inhibited in plasma‐treated healthy seeds. When F. fujikuroi‐infected rice seeds were irradiated with plasma after being immersed in sterile distilled water, bakanae disease severity index and the percentage of plants with symptoms were reduced to 18.1% and 7.8% of non‐irradiated control, respectively, depending on the duration of plasma irradiation. The bacterial seedling blight disease index was also reduced by plasma irradiation in vacuum‐inoculated seeds to 38.6% of the non‐irradiated control, and in infected seeds harvested from spray‐inoculated heads of rice plants to 40.1% of the control. Therefore, plasma irradiation seems to be effective in controlling two independent seedborne rice seedling diseases. 相似文献
2.
Development of a Pseudomonas syringae–Eutrema salsugineum pathosystem to investigate disease resistance in a stress tolerant extremophile model plant
下载免费PDF全文

To improve the ability to understand how plants respond to multiple and/or concurrent stresses, disease resistance was investigated in Eutrema salsugineum, an extremophile model plant that is highly tolerant of abiotic stress. Compared to Arabidopsis (Col‐0), both Yukon and Shandong Eutrema accessions exhibit increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) and pv. maculicola (Psm), with Shandong Eutrema exhibiting greater resistance to Pst than Yukon Eutrema. RT‐PCR of the EsPR1 (Pathogenesis‐related 1) defence marker gene confirmed RNA‐Seq data that healthy Shandong Eutrema constitutively expresses EsPR1. The data suggests that Shandong Eutrema exists in a highly primed state of defence preparedness, as it displays heightened resistance compared to defence‐primed natural accessions of Arabidopsis (Can‐0, Bur‐0). Pathogen‐triggered PR1 expression was delayed in Yukon Eutrema; however, these plants were resistant to Pst suggesting that Yukon Eutrema employs a PR1‐independent mechanism to resist Pst. This study demonstrates that Eutrema is an excellent model to investigate biotic stress tolerance. The Eutrema–P. syringae pathosystem will facilitate future studies to understand how this extremophile tolerates both abiotic and biotic stress, and will allow exploration of the interplay of these responses to inform efforts to improve stress tolerance in crops. 相似文献
3.
The population structure of Alternaria species associated with potato foliar diseases in China has not been previously examined thoroughly. Between 2010 and 2013, a total of 511 Alternaria isolates were obtained from diseased potato leaves sampled in 16 provinces, autonomous regions or municipalities of China. Based on morphological traits and molecular characteristics, all the isolates were identified as Alternaria tenuissima, A. alternata or A. solani. Of the three species, A. tenuissima was the most prevalent (75·5%), followed by A. alternata (18·6%) and A. solani (5·9%). Phylogenetic analysis based on sequences of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of representative Alternaria isolates showed that A. solani was distinct from the two small‐spored Alternaria species. Phylogenetic analysis of the partial coding sequence of the histone 3 gene divided the same collection of isolates into three main clades representing A. tenuissima, A. alternata and A. solani, respectively. The pathogenicity of the isolates on detached leaves of potato cv. Favorite did not differ significantly between the three species or between isolates from different geographical origins. The results indicate that the population structure of Alternaria species associated with potato foliar diseases differs from that reported previously in China. This is the first report of A. tenuissima causing potato foliar diseases in China. 相似文献
4.
M. C. Quincke T. D. Murray C. J. Peterson K. E. Sackett C. C. Mundt 《Plant pathology》2014,63(6):1207-1217
Cephalosporium stripe, caused by the fungus Cephalosporium gramineum, is the only known vascular wilt disease of small grain cereals. The pathogen causes characteristic striping of leaf blades and sheaths, but can also result in seedling death, stunting, and sterile seed heads (white heads). Cephalosporium stripe is a disease of autumn (fall)‐sown wheat, especially in cool and wet production regions. The disease is further favoured by early sowing, reduced tillage practices, low pH soils, and by frost heaving that damages roots. Infections occur almost entirely from spores produced on surface crop debris that are washed into the soil, although a low level of seed transmission can also occur. The pathogen colonizes root epidermis and cortical cells, subsequently moves into the vascular tissue, and eventually spreads throughout the entire plant. Production of fungal toxin(s) and extracellular polysaccharides probably play an important role in pathogenesis. Cultural practices such as delayed sowing, crop rotation, destruction of crop debris, liming of soil and fertilizer management all have potential to reduce the incidence of cephalosporium stripe. All of these cultural practices have negative economic impacts and/or increase soil erosion, and thus there is much interest in the development of resistant cultivars. There is potential for introgression of highly effective resistance from wild species into cultivated wheat. Genes for quantitatively inherited resistance can also be accumulated within cultivated wheat to attain moderate resistance. The continued use of cultivars with moderate resistance will probably be sufficient for long‐term control of the disease. 相似文献
5.
Comparison of root and foliar applications of potassium silicate in potentiating post‐infection defences of melon against powdery mildew
下载免费PDF全文

L. J. Dallagnol F. A. Rodrigues S. F. Pascholati A. A. Fortunato L. E. A. Camargo 《Plant pathology》2015,64(5):1085-1093
The application of silicon to the roots or leaves reduces the severity of powdery mildew (Podosphaera xanthii) in melon but the latter treatment is less effective. This study compared key biochemical defence responses of melon triggered by P. xanthii after root or foliar treatment with potassium silicate (PS). Treatments consisted of pathogen‐inoculated or mock‐inoculated plants supplied with PS via roots or foliarly, as well as a non‐treated control. The activity of defence enzymes and the concentration of phenolic compounds, lignin and malondialdehyde were determined from leaf samples at different time points after inoculation. Pathogen‐inoculated plants irrigated with PS showed both an accumulation of silicon and primed defence responses in leaves that were not observed in pathogen‐inoculated plants either sprayed with PS or not treated. These responses included the anticipated activity of peroxidase and accumulation of soluble phenols, the activation of chitinase and repression of catalase, and the stronger activation of superoxide dismutase, peroxidase and β‐1,3‐glucanase. Moreover, the lignin concentration increased in response to inoculation, whereas the malondialdehyde concentration decreased. For the foliar treatment, however, only an increase in lignin deposition was observed compared with the control plants. The results show that silicon strongly plays an active role in modulating the defence responses of melon against P. xanthii when supplied to the roots as opposed to the foliage. 相似文献
6.
7.
Spatial genetic structure and dispersal of the cacao pathogen Moniliophthora perniciosa in the Brazilian Amazon
下载免费PDF全文

A. S. Artero J. Q. Silva P. S. B. Albuquerque E. A. Bressan G. A. Leal Jr A. M. Sebbenn G. W. Griffith A. Figueira 《Plant pathology》2017,66(6):912-923
Moniliophthora perniciosa is the causal agent of witches’ broom in Theobroma cacao (cacao). Three biotypes of M. perniciosa are recognized, differing in host specificity, with two causing symptoms on cacao or Solanaceae species (C‐ and S‐biotypes), and the third found growing endophytically on lianas (L‐biotype). The objectives of this study were to clarify the genetic relationship between the three biotypes, and to identify those regions in the Brazilian Amazon with the greatest genetic diversity for the C‐biotype. Phylogenetic reconstruction based on the rRNA ITS regions showed that the C‐ and S‐biotypes formed a well‐supported clade separated from the L‐biotype. Analysis of 131 isolates genotyped at 11 microsatellite loci found that S‐ and especially L‐biotypes showed a higher genetic diversity. A significant spatial genetic structure was detected for the C‐biotype populations in Amazonia for up to 137 km, suggesting ‘isolation by distance’ mode of dispersal. However, in regions containing extensive cacao plantings, C‐biotype populations were essentially ‘clonal’, as evidenced by high frequency of repeated multilocus genotypes. Among the Amazonian C‐biotype populations, Acre and West Amazon displayed the largest genotypic diversity and might be part of the centre of diversity of the fungus. The pathogen dispersal may have followed the direction of river flow downstream from Acre, Rondônia and West Amazon eastward to the rest of the Amazon valley, where cacao is not endemic. The Bahia population exhibited the lowest genotypic diversity, but high allele richness, suggesting multiple invasions, with origin assigned to Rondônia and West Amazon, possibly through isolates from the Lower Amazon population. 相似文献
8.
M. Verbeek A. M. Dullemans P. J. van Bekkum R. A. A. van der Vlugt 《Plant pathology》2013,62(2):444-451
Lettuce big‐vein associated virus (LBVaV, genus Varicosavirus) was shown to be responsible for characteristic necrotic symptoms observed in combination with big‐vein symptoms in lettuce breeding lines when tested for their susceptibility to lettuce big‐vein disease (BVD) using viruliferous Olpidium virulentus spores in a nutrient film technique (NFT) system. Lettuce plants showing BVD are generally infected by two viruses: Mirafiori lettuce big‐vein virus (MiLBVV, genus Ophiovirus) and LBVaV. New mechanical inoculation methods were developed to separate the two viruses from each other and to transfer both viruses to indicator plants and lettuce. After mechanical inoculation onto lettuce plants MiLBVV induced vein‐band chlorosis, which is the characteristic symptom of BVD. LBVaV caused a syndrome of necrotic spots and rings which was also observed earlier in lettuce plants inoculated in the NFT system, resembling symptoms described for lettuce ring necrosis disease (RND). This observation is in contrast with the idea that LBVaV only causes latent infections in lettuce. De novo next‐generation sequencing demonstrated that LBVaV was the only pathogen present in a mechanically inoculated lettuce plant with symptoms, providing evidence that LBVaV was the causal agent of the observed necrotic syndrome and thus fulfilling Koch’s postulates for this virus. The necrotic syndrome caused by LBVaV in lettuce is referred to as LBVaV‐associated necrosis (LAN). 相似文献
9.
Variation of pathotypes and races and their correlations with clonal lineages in Verticillium dahliae
下载免费PDF全文

R. M. Jiménez‐Díaz C. Olivares‐García J. L. Trapero‐Casas M. M. Jiménez‐Gasco J. A. Navas‐Cortés B. B. Landa M. G. Milgroom 《Plant pathology》2017,66(4):651-666
Understanding pathogenic variation in plant pathogen populations is key for the development and use of host resistance for managing verticillium wilt diseases. A highly virulent defoliating (D) pathotype in Verticillium dahliae has previously been shown to occur only in one clonal lineage (lineage 1A). By contrast, no clear association has yet been shown for race 1 with clonal lineages. Race 1 carries the effector gene Ave1 and is avirulent on hosts that carry resistance gene Ve1 or its homologues. The hypothesis tested was that race 1 arose once in a single clonal lineage, which might be expected if V. dahliae acquired Ave1 by horizontal gene transfer from plants, as hypothesized previously. In a diverse sample of 195 V. dahliae isolates from nine clonal lineages, all race 1 isolates were present only in lineage 2A. Conversely, all lineage 2A isolates displayed the race 1 phenotype. Moreover, 900‐bp nucleotide sequences from Ave1 were identical among 27 lineage 2A isolates and identical to sequences from other V. dahliae race 1 isolates in GenBank. The finding of race 1 in a single clonal lineage, with identical Ave1 sequences, is consistent with the hypothesis that race 1 arose once in V. dahliae. Molecular markers and virulence assays also confirmed the well‐established finding that the D pathotype is found only in lineage 1A. Pathogenicity assays indicated that cotton and olive isolates of the D pathotype (lineage 1A) were highly virulent on cotton and olive, but had low virulence on tomato. 相似文献
10.
Three nursery fields and three rootstock mother fields from commercial nurseries located in Comunidad Valenciana region (central‐eastern Spain) were surveyed in July 2011 to detect the presence and to quantify Ilyonectria spp. in the soil. In each field, ten soil samples were taken randomly with a soil probe at a depth of 10–30 cm, and 10–20 cm from the base of the plant. Three replicate subsamples (10 g each) were taken from each soil sample. DNA was extracted and a multiplex nested PCR with species‐specific primer pairs (Mac1/MaPa2, Lir1/Lir2 and Pau1/MaPa2) was used to identify the species present. Among the 180 soil DNA samples analysed, Ilyonectria spp. were detected in 172 of them. Ilyonectria macrodidyma complex was the most frequently detected, being identified in 141 samples from all the fields evaluated. However, I. liriodendri was detected in only 16 samples, but was present in all open‐root field nurseries and in two rootstock mother fields. In addition, quantitative PCR (qPCR) assays were done to assess the levels of I. liriodendri and I. macrodidyma‐complex DNA in the soil samples. Detection of Ilyonectria spp. DNA using qPCR correlated with the fields found positive with the nested multiplex PCR. DNA concentrations of Ilyonectria spp. ranged from 0·004 to 1904·8 pg μL?1. In general, samples from rootstock mother fields showed the highest DNA concentrations. The ability to detect and quantify Ilyonectria spp. genomic DNA in soil samples from nursery fields and rootstock mother fields confirms soils from both field types as important inoculum sources for black‐foot pathogens. 相似文献
11.
Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands
下载免费PDF全文

J. M. van der Wolf E. G. de Haan P. Kastelein M. Krijger B. H. de Haas H. Velvis O. Mendes M. Kooman‐Gersmann P. S. van der Zouwen 《Plant pathology》2017,66(4):571-583
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers. 相似文献
12.
The ascomycete fungus Microdochium nivale is a major pathogen of many species of the gramineae. Control measures rely heavily on chemical fungicides, making alternative means of disease reduction desirable. Phosphite (PO33?), has proven efficacy in reducing susceptibility of different species of gramineae to oomycetes, and has adverse effects on the in vitro growth of numerous other pathogens. The effect of phosphorous acid (H3PO3), phosphoric acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate (KH2PO4) and potassium hydroxide (KOH) on the in vitro mycelial growth and development of M. nivale was determined. Radial growth on amended potato dextrose agar (PDA) was used to calculate mean daily growth and percentage inhibition. PO33? had a significant inhibitory effect on mycelial growth, with EC50 values ranging between 35.9 and 40.99 μg mL?1, whilst PO43? and KOH had no significant inhibitory effect. Microscopic examination of mycelia showed morphological deformities in hyphae growing on PO33? amended PDA, whilst hyphal growth was normal on PO43? and KOH amended PDA. Conidial germination of M. nivale was significantly reduced following immersion in solutions of 50, 100 and 250 μg mL?1 of PO33?, while PO43? and KOH at the same concentrations induced no inhibitory affect. These results show that PO33? is a significant inhibitor of the growth of M. nivale and may have the potential to be used as a chemical control agent in the field. 相似文献
13.
N. A. van der Merwe E. T. Steenkamp C. Rodas B. D. Wingfield M. J. Wingfield 《Plant pathology》2013,62(3):642-648
The purpose of this study was to test the hypothesis that Chrysoporthe cubensis on native trees in South America could be the source of the pathogen that causes severe stem cankers and often mortality in commercially propagated Eucalyptus trees. This was done by investigating populations originating from two adjacent Eucalyptus (Myrtaceae) plantations in Colombia, and wild Miconia rubiginosa trees (Melastomataceae) growing alongside these stands. Polymorphic microsatellite markers were used to quantify allele sizes in 20 and 39 isolates from the two Eucalyptus stands and 32 isolates from adjacent M. rubiginosa trees. Gene and genotypic diversities were calculated from these data, and population differentiation and assignment tests were performed to ascertain whether the populations were genetically different. Results showed that there were no differences between any of the populations using these techniques, and that they can be treated as a single population. Therefore, the results support the hypothesis that host switching has occurred in C. cubensis in Colombia. 相似文献
14.
Spatiotemporal distribution of Ascochyta pinodes and Ascochyta pinodella during the winter growing season in France
下载免费PDF全文

C. Le May M. I. Chilvers A. L. Saucereau M. Guibert T. L. Peever 《Plant pathology》2018,67(5):1031-1045
Ascochyta blight of pea is caused by four related fungi, Ascochyta pisi, Phoma koolunga, Ascochyta pinodes and Ascochyta pinodella. The latter two taxa appear to be much more common and economically significant worldwide but the relative impact of each fungus on ascochyta blight epidemics is not well understood. To study the spatiotemporal distribution of A. pinodes and A. pinodella infecting pea in France, 368 isolates were sampled monthly, from February to May, at three locations (Rennes, Boigneville and Dijon) and molecular markers were used to genotype isolates. The aggressiveness of isolates from the fourth sampling date was estimated using a detached leaf assay on the winter cultivar Enduro. Disease was low during the sampling period as climatic conditions were generally not conducive to disease development (cold temperature, low rainfall). Population genetic analysis showed that 99% of the observed variation could be attributed to variation within populations compared to only 1% among populations. Both species were observed in each location, although A. pinodella was observed at a lower frequency (6–32%). Moreover, results showed that both species could develop on different nodes of the plant. Significant differences in aggressiveness were observed between species and among isolates within species with A. pinodes isolates being significantly more aggressive on average than A. pinodella isolates. These results emphasize the necessity to study the components of disease complexes in order to understand the impact of pathogen species interactions on disease and yield reduction as well as the dynamics of disease epidemics during the cropping season. 相似文献
15.
R. Oliver J. Lichtenzveig K.‐C. Tan O. Waters K. Rybak J. Lawrence T. Friesen P. Burgess 《Plant pathology》2014,63(5):1027-1032
Genetic disease resistance is widely assumed, and occasionally proven, to cause host yield or fitness penalties due to inappropriate activation of defence response mechanisms or diversion of resources to surplus preformed defences. The study of resistance gene trade‐offs has so far been restricted to biotrophic pathogens. In some Pleosporales necrotrophic interactions, quantitative resistance is positively associated with insensitivity to effectors. Host lines that differ in sensitivity can easily be identified amongst current cultivars and advanced breeding lines. Large wheat cultivar trials were used to test whether lines sensitive or insensitive to three necrotrophic effectors from Pyrenophora tritici‐repentis and Parastagonospora nodorum differed in yield when subjected to natural disease and stress pressures in the West Australian wheat belt. There was no significant yield penalty associated with insensitivity to the fungal effectors ToxA, SnTox1 and SnTox3. Some yield gains were associated with insensitivity and some of these gains could be attributed to increased disease resistance. It is concluded that insensitivity to these effectors does not render such plants more vulnerable to any relevant biotic or abiotic stress present in these trials. These results suggest that the elimination of sensitivity alleles for necrotrophic effectors is a safe and facile strategy for improving disease resistance whilst maintaining or improving other desirable traits. 相似文献
16.
As a major component of the cell wall, lignin has been suggested to play an important role in the plant defence response to various pathogens. However, how lignin is involved in plant pathogen interaction is still unclear. Here, a series of transgenic tobacco lines were cultivated with a range of differences in lignin content and composition. Evaluation of pathogen resistance in these plants indicated that lower total lignin content aggravated the severity of tobacco black shank and bacterial wilt diseases, while increased sinapyl lignin (S) alleviated the disease symptoms. The regression analysis indicated both lignin content and S lignin were positively correlated with disease resistance. These two factors had additive effects, exhibiting stronger correlation with disease resistance when they were combined. Neither guaiacyl lignin (G) nor S/G ratio showed close correlation with disease resistance. The expression of pathogenesis‐related protein genes PR2 and PR3 was induced after pathogen inoculation. However, the up‐regulation of PR2 and PR3 was not associated with a disease resistance‐induced increase in lignin content. These data collectively suggest that both total lignin content and S lignin are main factors that contribute to the basic defence response in tobacco. 相似文献
17.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species. 相似文献
18.
Pathogenicity and phylogenetic analysis of Clavibacter michiganensis strains associated with tomato plants in Iran
下载免费PDF全文

E. Osdaghi M. Ansari S. M. Taghavi S. Zarei R. Koebnik J. R. Lamichhane 《Plant pathology》2018,67(4):957-970
During 2013–2016, 277 tomato fields were surveyed across Iran to monitor the status of bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis. Altogether, 450 plant samples were collected, both with and without symptoms, from which 35 bacterial strains were recovered. These were positive for the PCR test performed using the Clavibacter‐specific primer pair CMR16F1/CMR16R1. Based on the phylogeny of the gyrB gene sequences, 31, three and one of the 35 strains were identified as C. michiganensis, Microbacterium sp. and Agrococcus sp., respectively. The 31 strains of C. michiganensis were further identified as C. michiganensis subsp. michiganensis (23 strains), C. michiganensis subsp. tessellarius (six strains) and Clavibacter spp. (two strains). This was subsequently confirmed by multilocus sequence analysis (MLSA) of five housekeeping genes (atpD, gyrB, ppk, recA and rpoB). In pathogenicity tests, all 23 strains induced wilting symptoms on tomato plants in greenhouse conditions, while no symptoms were observed on eggplant, bell pepper and chili pepper plants. All evaluated pathogenicity determinant genes (celA, pat‐1, tomA, ppaA, chpC and chpG) were detected in 18 out of 31 C. michiganensis strains, using eight specific primer pairs. Estimation of the number of nucleotide differences, sequence similarity matrix and MLSA clustered two peach‐coloured strains (Tom495 and Tom532) separately from all nine previously described subspecies, thereby suggesting these two strains are a new subspecies of C. michiganensis. However, a detailed taxonomic study using multiphased molecular approaches is needed to delineate a formal taxonomic name for these atypical strains. 相似文献
19.
Severity of phytophthora root rot and pre‐emergence damping‐off in subterranean clover influenced by moisture,temperature, nutrition,soil type,cultivar and their interactions
下载免费PDF全文

Studies were carried out in controlled environment rooms reflecting field situations. In the presence of the devastating soilborne pathogen Phytophthora clandestina, subterranean clover (Trifolium subterraneum) seedling emergence was significantly affected by moisture, soil type, temperature and cultivar. The level of rotting of tap and lateral roots was significantly affected by nutrition, soil type, temperature and cultivar. There were significant interactions involving temperature, moisture, soil type and cultivar; cultivar resistance, high moisture, high or medium temperature, high nutrition and sand soil all contributed towards less pre‐emergence damping‐off and tap and lateral root disease and to greater clover productivity. Host resistance of subterranean clover cultivars was critical for reducing disease severity and increasing productivity, even when favourable environmental conditions for severe disease occurred. In the presence of P. clandestina, the most resistant cultivar, Seaton Park, performed best under a high temperature, high nutrition and high moisture combination, but showed lower productivity under conditions of low nutrition or lower temperature, even when moisture level was high. In contrast, less resistant cultivars Riverina and Meteora had less disease and greater productivity under low moisture conditions. Findings reflect field observations that pre‐emergence damping‐off and root disease from P. clandestina in subterranean clover is particularly severe under colder conditions and in nutritionally impoverished sandy soils, and demonstrate how variations in soil type, nutrition, moisture, temperature and cultivar have profound effects on the expression and severity of phytophthora pre‐emergence damping‐off and root disease and the productivity of subterranean clover forages. 相似文献
20.
Effect of azole fungicide mixtures,alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici
下载免费PDF全文

The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (P = 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action. 相似文献