首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylella fastidiosa is a plant pathogenic bacterium emerging in Europe. In France its emergence has been demonstrated through interceptions of contaminated coffee plants and, in 2015, by a survey of natural settings. The first French focus of contamination was detected in 2015 in Corsica; since then, almost 300 foci have been found and nearly 30 plant species have been declared contaminated, with Polygala myrtifolia remaining the principal host, suffering from severe leaf scorch. This study reports on the diversity of X. fastidiosa identified in France in 2015. Multilocus sequence analysis/typing revealed the presence of mainly X. fastidiosa subsp. multiplex sequence types (STs) ST6 and ST7. A focus of X. fastidiosa subsp. pauca ST53 was identified in mainland France; one sample contaminated by X. fastidiosa subsp. sandyi ST76, one novel recombinant, and coinfections of different isolates in individual samples were also identified, but could not be confirmed by successive samplings, indicating limited or transient contamination. Koch's postulates were fulfilled for two isolates of X. fastidiosa subsp. multiplex on P. myrtifolia, one being ST6 and the other ST7. Comparative genomics of the genome sequences of three French isolates (one ST6 and two ST7) with available sequences revealed that, unlike the American Dixon strain, the French ST6 and ST7 strains are devoid of a plasmid encoding a complete type IV secretion system. Other differences regarding phage sequences were highlighted. Altogether, the results suggest that the emergence of X. fastidiosa in France is linked to several introduction events of diverse strains from different subspecies.  相似文献   

2.
Xylella fastidiosa subspecies pauca strain De Donno (XfDD) ST53 is the causal agent of olive quick decline syndrome, a severe disease first described in Apulia, Italy. Although the two local cultivars Cellina di Nardò and Ogliarola Salentina showed high susceptibility, traits of resistance to the bacterium were found in the cultivar Leccino. Previous studies in field-grown olives suggested that vascular occlusions and anatomophysiological properties of the different cultivars played a role in the olive response to XfDD. The present investigation reports observations at the early stage of the infection on artificially inoculated olives. Electron microscope studies showed that XfDD exploits the pit membranes (PMs) of the susceptible cultivar Cellina di Nardò to spread systemically. In this cultivar, PMs were degraded upon XfDD infection, suggesting activity of bacterial cell wall-degrading enzymes. Moreover, occluded vessels contained an amorphous electrondense matrix resembling gum. Conversely, in Leccino, occluded vessels were mainly filled by callose-like granules that tightly entrapped XfDD cells. In addition, PMs from Leccino had a compact undegraded structure that was not permeable to XfDD. Our study suggests that exploitation of PMs is a key event in the infection process of X. fastidiosa subsp. pauca ST53 in susceptible olive cultivars.  相似文献   

3.
Xylella fastidiosa is an important insect-vectored bacterial plant pathogen with a wide host range, causing significant economic impact in the agricultural and horticultural industries. Once restricted to the Americas, severe European outbreaks have been discovered recently in Italy, Spain, France, and Portugal. The Italian outbreak, detected in Puglia in 2013, has spread over 100 km, killing millions of olive trees, and is still expanding. To date, quantified assessment of important epidemiological parameters useful for risk assessment and management, such as transmission rates, symptomless periods, and time to death in field populations, has been lacking. This is due to the emergent and novel nature of the outbreak and length of time needed to monitor the course of disease progression. To address this, we developed a Bayesian method to infer epidemiological parameters by fitting and comparing compartmental epidemiological models to short snapshots of disease progression observed in multiple field plots. We estimated that each infected tree with symptoms is able to infect around 19 trees per year (95% credible range 14–26). The symptomless stage was estimated to have low to negligible infectivity and to last an average of approximately 1.2 years (95% credible range 1.0–1.3 years). Tree desiccation was estimated to occur approximately 4.3 years (95% credible range 4.0–4.6 years) after symptom appearance. However, we were unable to estimate the infectiousness of desiccated trees from the data. Our method could be used to make early estimates of epidemiological parameters in other emerging disease outbreaks where symptom expression is slow.  相似文献   

4.
In Europe, the meadow spittlebug Philaenus spumarius is the main known vector of the quarantine bacterium Xylella fastidiosa. So far detection and identification of X. fastidiosa has more often been performed from plant matrices than insects, mainly using a real-time PCR and multilocus sequence typing (MLST) approach. Detection of X. fastidiosa in its insect vectors would enhance knowledge of the epidemiologic situation in France, specifically in the already infected Corsica and Provence-Alpes-Côte d’Azur (PACA) regions. The aim of this study was to validate a methodological approach to detect X. fastidiosa in P. spumarius, analysed individually or in groups of 10, using real-time PCR and MLST, and to apply the approach to more than 4,000 individuals collected between 2015 and 2019 from infected areas. The corresponding results expanded our knowledge of the epidemiology of X. fastidiosa in France: (a) X. fastidiosa subsp. multiplex including the sequence types ST6 and ST7 were identified in the insect vector; (b) the rate of positive insects per infected area was as high as 33.3% in Corsica or 50% in the PACA region; (c) positive adults were found during winter; and (d) the bacterial load in P. spumarius (droplet digital PCR) usually ranged from 103 to 104 cells per insect, but could be as high as 105 or 106 cells per insect for some individuals (13%). The subspecies and sequence types detected in P. spumarius corresponded to the situation officially reported for plants in the same areas.  相似文献   

5.
Deployment of resistant varieties is a key strategy to mitigating economic losses due to arthropod‐transmitted plant pathogens of perennial crops. In many cases, the best available resistant traits for introgression confer only partial resistance. Plants displaying partial resistance have lower pathogen titres than susceptible counterparts, but remain hosts for the pathogen. As partially resistant varieties maintain yield after infection, infected plants are unlikely to be rogued (i.e. removed). Accordingly, there is a risk that partially resistant plants could serve as a source of inoculum for pathogen spread to susceptible plants. Here, a mathematical model that tracked spread of an arthropod‐transmitted pathogen in a plant population consisting of susceptible and partially resistant plants was used to identify a threshold acquisition rate from partially resistant plants that resulted in limited spread of the pathogen from partially resistant plants to susceptible plants. The acquisition threshold from partially resistant plants varied with parameters influenced by disease management decisions such as number of vectors per plant, vector turnover, replacement of susceptible plants, and proportion of plants that were partially resistant. In model simulations, effects of deploying a partially resistant variety on disease incidence in a susceptible variety depended on the extent to which pathogen spread among susceptible plants was suppressed and acquisition rates from partially resistant plants. Collectively, the results indicate that risk of partially resistant plants serving as inoculum sources could be assessed prior to deployment, thereby enabling design of complementary disease management tactics to minimize economic losses in susceptible varieties following deployment.  相似文献   

6.
Ralstonia solanacearum race 4 isolates were obtained from Zingiberaceae plants in India during bacterial wilt outbreaks. Polyphasic phenotypic and genotypic analysis revealed intraracial diversity and dominance of biovar 3 over biovar 4. Biovar 3 strains were isolated from very severely wilted Zingiberaceae plants in the field and found to be present across diverse geographical, host and seasonal boundaries. It was hypothesized that these isolates belong to a single, ‘fast wilting’, lineage. Using one ‘fast wilting’ isolate in controlled inoculations, rapid wilt was observed in ginger within 5–7 days. Wilting was also observed in several other closely and distantly related hosts such as turmeric (Curcuma longa), aromatic turmeric (Curcuma aromatica), black turmeric (Curcuma caesia), sand ginger (Kaempferia galanga), white turmeric (Curcuma zeodaria), awapuhi (Zingiber zerumbet), greater galangal (Alpinia galanga), globba (Globba sp.), small cardamom (Elettaria cardamomum) and large cardamom (Ammomum subulatum) of the Zingiberaceae family, and in tomato (Solanum lycopersicum). Molecular analysis, including multiplex PCR‐based phylotyping, sequence analysis of 16S rDNA, 16–23S intergenic spacer and the recN gene, and multilocus sequence typing, revealed minimal differences between fast wilting isolates, confirming that almost all belong to the same lineage. Biovar 4 was isolated from plants showing slow wilt progression and self‐limiting wilting in restricted geographical locations instead, and was identified to be genetically distinct from the fast wilting biovar 3 isolates. To the authors' knowledge, this is the first report of host range and genetic analysis of R. solanacearum race 4 in India.  相似文献   

7.
The present study provides insight into the diversity of 147 Xanthomonas campestris pv. campestris (Xcc) isolates obtained from six Brassica oleracea vegetable crops (broccoli, cabbage, cauliflower, collard greens, kale, kohlrabi) and the winter oilseed rape crop Brassica napus, collected from different regions in Serbia in 2014. The XCF/XCR pathovar-specific primer set was used for fast preliminary identification. In repetitive sequence-based PCR (BOX, ERIC and REP) of all isolates, a higher level of genetic diversity was found in winter oilseed rape isolates compared to isolates from the other hosts. ERIC and REP-PCR showed the highest heterogeneity, with 10 and nine banding patterns, respectively. The REP-PCR results showed the highest correlation (70%) with those obtained with multilocus sequence analysis (MLSA), performed with 10 housekeeping genes (fusA, gap-1, gltA, gyrB1, lacF, lepA, rpoD, dnaK, fyuA and gyrB2). Three distinct phylogenetic groups of winter oilseed rape isolates were detected using MLSA. Two genes, gltA and rpoD, showed the greatest ability to identify and discriminate winter oilseed rape Xcc isolates from isolates of the other six hosts. The lepA gene exhibited specific three-nucleotide changes in sequences of some of the isolates. Results of virulence testing of 18 representative isolates showed statistically significant host–pathogen specialization for Xcc isolates from winter oilseed rape, cauliflower, kale and kohlrabi. In conclusion, oilseed rape isolates are more genetically diverse and show greater specialization to their host in comparison to the rest of the tested isolates from other brassica hosts.  相似文献   

8.
Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach.  相似文献   

9.
Seasonality plays an important role in the dynamics of infectious disease. For vector‐borne pathogens, the effects of seasonality may be manifested in the variability in vector abundance, vector infectiousness, and host‐infection dynamics over the year. The relative importance of multiple sources of seasonality on the spread of a plant pathogen, Xylella fastidiosa, into vineyards was explored. Observed seasonal population densities of the primary leafhopper vector, Graphocephala atropunctata, from 8 years of surveys in northern California were incorporated into a model of primary spread to estimate the risk of pathogen infection under different scenarios regarding seasonality in vector natural infectivity (i.e. constant or increasing over the season) and grapevine recovery from infection (i.e. none or seasonal recovery). The extent to which local climatic conditions affect risk estimates via differences in vector abundance was investigated. Seasonal natural infectivity, seasonal recovery, and especially the combination, reduced (up to 8‐fold on average) within‐season and cumulative yearly estimates of pathogen spread. Estimated risk of infection also differed greatly among years due to large differences in vector abundance, with wet and moderate winter and spring conditions favouring higher G. atropunctata abundance. Seasonal variation of the pathogen–vector interaction may play an important role in the dynamics of disease in vineyards, reducing the potential prevalence from what it could be in their absence. Moreover, climate, by affecting sharpshooter leafhopper abundance or activity, may influence Pierce’s disease dynamics.  相似文献   

10.
Little cherry virus 1 (LChV‐1), a member of the recently proposed genus Velarivirus, is a sweet cherry pathogen that has been recently reported to infect other Prunus species and is associated with various plant disorders. In this work the incidence of the virus on its putative hosts and possible mechanisms driving its evolution were investigated. Due to problems encountered with LChV‐1 detection, a new nested RT‐PCR assay was developed and applied. The virus was found to be prevalent in cherry plantations in Greece and only occasionally detected in other Prunus species. Sequences corresponding to the partial RNA‐dependent RNA polymerase (RdRp), heat‐shock protein homologue (HSP70h) and coat protein (CP) genes were determined from Greek LChV‐1 isolates originating from different hosts; these were analysed, along with published homologous genomic regions from other isolates. Phylogenetic analysis of the three genes revealed the segregation of four evolutionary distinct groups showing no host or geography‐based clustering. Mean genetic distances among the four groups were high with the CP region showing the highest divergence, although intragroup variability levels were low. Nevertheless, estimations of the mean ratio of nonsynonymous substitutions per synonymous site to synonymous substitutions per synonymous site (dN/dS) for the partial RdRp, HSP70h and CP indicated that these genomic regions are under negative selection pressure. Interestingly, a recombination event was identified at the 3′ end of RdRp on a Greek virus isolate, thus highlighting the role of this mechanism in the evolutionary history of LChV‐1.  相似文献   

11.
Rhynchosporium commune is a destructive pathogen of barley, causing leaf scald. Previous microsatellite studies used Syria as a representative of cultivated barley's centre of origin, the Fertile Crescent. These suggested that R. commune and Hordeum vulgare (cultivated barley) did not co‐evolve in the host's centre of origin. The present study compares R. commune populations from Syria with those from Iran, which represents a secondary centre of origin for barley at the eastern edge of the Iranian Plateau. Results from this study also suggest that R. commune and barley did not co‐evolve in the centre of origin of cultivated barley. This was evidenced by the low pathogen genetic diversity in Iran, which was even lower than in Syria, indicating that the pathogen may have been introduced recently into Iran, perhaps through infected barley seed. Hierarchical analyses of molecular variance revealed that most genetic diversity in Iran and Syria is distributed within populations, with only 14% among populations. Analyses of multilocus association, genotype diversity and mating type frequency suggest that Iranian populations reproduce predominantly asexually. The presence of both mating types on barley and uncultivated grasses suggest a potential for sexual reproduction. Rhynchosporium commune was also found on Hordeum murinum subsp. glaucum, H. vulgare subsp. spontaneum, Lolium multiflorum and, for the first time, on Avena sativa. The variety of wild grasses that can be infected with R. commune in Iran raises concerns of these grasses acting as evolutionary breeding grounds and sources of inoculum.  相似文献   

12.
Hydrogen peroxide (H2O2) localization and roles of peroxidases, malondialdehyde and reduced glutathione were compared in leaves of apricot (Prunus armeniaca) plants asymptomatic, European Stone Fruits Yellows (ESFY)-symptomatic and recovered. Nested PCR analysis revealed that Candidatus Phytoplasma prunorum, is present in asymptomatic, symptomatic and recovered apricot trees, confirming previous observations on this species, in which recovery does not seem to be related to the disappearance of phytoplasma from the plant.H2O2was detected cytochemically by its reaction with cerium chloride, which produces electron-dense deposits of cerium perhydroxides. H2O2was present in the plasmalemma of the phloem cells of recovered apricot plant leaves, but not in the asymptomatic or symptomatic material. Furthermore, by labelling apricot leaf tissues with diaminobenzidine DAB, no differences were found in the localization of peroxidases.Protein content in asymptomatic, symptomatic and recovered leaves was not significantly different from one another. In contrast, guaiacol peroxidase activity had the following trend: symptomatic > recovered > asymptomatic, whereas reduced glutathione content followed the opposite trend: asymptomatic > recovered > symptomatic. Moreover, no differences were observed in malondialdehyde concentrations between asymptomatic, symptomatic and recovered leaves. The overall results suggest that H2O2 and related metabolites and enzymes appear to be involved in lessening both pathogen virulence and disease symptom expression in ESFY-infected apricot plants.  相似文献   

13.
Pseudoperonospora cubensis is an oomycete pathogen causing downy mildew disease on a variety of Cucurbitaceae, and has recently re‐emerged as a destructive disease on crops in this family, mainly on cucumber and squash. Multilocus sequence analysis (MLSA) of four mitochondrial and two nuclear DNA regions was used to detect changes in the genetic structure of P. cubensis populations occurring in the Czech Republic that might be associated with recently reported shifts in virulence. The analysed sample set contains 67 P. cubensis isolates collected from 1995 to 2012 in the Czech Republic and some other European countries. Sequence analyses revealed differences and changes in the genetic backgrounds of P. cubensis isolates. While all isolates sampled before 2009 exhibited the genotype of the subspecies of Clade II and were collected from cucumber, all samples collected from other hosts belonged to Clade I (P. cubensis sensu stricto) or were sampled from 2009 onwards. In addition, 67·16% of all post‐2009 isolates from Clade II had two heterozygous positions in their nrITS sequence, which suggests sexual reproduction and/or a mutational origin. Thus, the results indicate that, apart from the rise in prevalence of Clade I, the change in the genetic structure of P. cubensis populations may be linked with a hybridization or, less likely, a mutation event that rendered strains able to infect a broader spectrum of host species.  相似文献   

14.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a serious threat to rice production worldwide. In temperate regions, where rice is not cultivated for several months each year, little is known about the initial onset of the disease in the field. The main overwintering and primary inoculum sources reported are infested residues and seeds, but the subsequent steps of the disease cycle are largely unknown, even though a systemic infection has been proposed but not demonstrated. The present work follows rice blast progression in infected seeds from germination to seedling stage, with direct and detailed microscopic observations under both aerobic conditions and water seeding. With the use of GFP‐marked M. oryzae strains, it was shown that spores are produced from contaminated seeds, infect emerging seedling tissues (coleoptile and primary root) and produce mycelium that colonizes the newly formed primary leaf and secondary roots. Using different rice cultivars exhibiting distinct levels of resistance/susceptibility to M. oryzae at the 2/4‐leaf stage, it was observed that resistance or susceptibility of a considered genotype is already established at the seedling stage. The results also showed that when plants are inoculated either at ripening stage (mature panicles), heading stage (flowering/immature panicles) or even before heading (flag leaf fully developed), they produce infested seeds. These seeds produce contaminated seedlings that mostly die and serve as an inoculum source for healthy neighbouring plants, which gradually develop disease symptoms on leaves. The possible rice blast disease cycle was reconstructed on irrigated rice in temperate regions.  相似文献   

15.
How weed communities assemble represents one the key issues of weed science. For a decade, functional approaches have been applied to investigate the processes that govern weed community assembly. In most previous studies, trait values have been generally averaged over multiple populations and habitats. Consequently, conspecifics display similar trait values while neglecting the considerable influence of intraspecific variability to detect changes in functional diversity in response to environmental drivers. However, this influence has been shown to be critical, especially, at local scales. Here, we studied changes in weed functional diversity at the field scale in four crop sequences. We focused on intra‐ and interspecific variability of four key functional traits involved in response to resource acquisition processes, the latter being modified by climate, management and competition. The relative influence of intra‐ and interspecific variability among the crop sequence types was highlighted using a diversity partitioning approach. It provides evidence for substantial amount of intraspecific variability in the weed community and underlines its essential role in response to fine‐scale environmental drivers. In addition, we investigated the response of the three most abundant species to competition with the crop, the growing season and the crop sequence type. We highlighted that these species showed a wide range of combinations of trait values, suggesting the co‐existence of several successful strategies. Based on these results, we emphasise that neglecting intraspecific variability can lead to substantial underestimations of the functional weed response to management and crop‐weed competition at the field scale.  相似文献   

16.
17.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

18.
Grosmannia alacris is a fungus commonly associated with root‐infesting bark beetles occurring on Pinus spp. The fungus has been recorded in South Africa, the USA, France, Portugal and Spain and importantly, has been associated with pine root diseases in South Africa and the USA. Nothing is known regarding the population genetics or origin of G. alacris, although its association with root‐infesting beetles native to Europe suggests that it is an invasive alien in South Africa. In this study, microsatellite markers together with newly developed mating type markers were used to characterize a total of 170 isolates of G. alacris from South Africa and the USA. The results showed that the genotypic diversity of the South African population of G. alacris was very high when compared to the USA populations. Two mating types were also present in South African isolates and the MAT1‐1/MAT1‐2 ratio did not differ from 1:1 (χ2 = 1·39, = 0·24). This suggests that sexual reproduction most probably occurs in the fungus in South Africa, although a sexual state has never been seen in nature. In contrast, the large collection of USA isolates harboured only a single mating type. The results suggest that multiple introductions, followed by random mating, have influenced the population structure in South Africa. In contrast, limited introductions of probably a single mating type (MAT1‐2) may best explain the clonality of USA populations.  相似文献   

19.
Moniliophthora perniciosa is the causal agent of witches’ broom in Theobroma cacao (cacao). Three biotypes of M. perniciosa are recognized, differing in host specificity, with two causing symptoms on cacao or Solanaceae species (C‐ and S‐biotypes), and the third found growing endophytically on lianas (L‐biotype). The objectives of this study were to clarify the genetic relationship between the three biotypes, and to identify those regions in the Brazilian Amazon with the greatest genetic diversity for the C‐biotype. Phylogenetic reconstruction based on the rRNA ITS regions showed that the C‐ and S‐biotypes formed a well‐supported clade separated from the L‐biotype. Analysis of 131 isolates genotyped at 11 microsatellite loci found that S‐ and especially L‐biotypes showed a higher genetic diversity. A significant spatial genetic structure was detected for the C‐biotype populations in Amazonia for up to 137 km, suggesting ‘isolation by distance’ mode of dispersal. However, in regions containing extensive cacao plantings, C‐biotype populations were essentially ‘clonal’, as evidenced by high frequency of repeated multilocus genotypes. Among the Amazonian C‐biotype populations, Acre and West Amazon displayed the largest genotypic diversity and might be part of the centre of diversity of the fungus. The pathogen dispersal may have followed the direction of river flow downstream from Acre, Rondônia and West Amazon eastward to the rest of the Amazon valley, where cacao is not endemic. The Bahia population exhibited the lowest genotypic diversity, but high allele richness, suggesting multiple invasions, with origin assigned to Rondônia and West Amazon, possibly through isolates from the Lower Amazon population.  相似文献   

20.
Phytophthora austrocedrae is a recently discovered pathogen that causes severe mortality of Austrocedrus chilensis in Patagonia. The high level of susceptibility of the host tree, together with the distribution pattern of the pathogen, have led to the hypothesis that P. austrocedrae was introduced into Argentina. The aim of this study was to assess the population structure of Paustrocedrae isolates from Argentina in order to gain an understanding of the origin and spread of the pathogen. Genetic diversity was determined based on amplified fragment length polymorphisms (AFLPs). In total, 48 isolates of Paustrocedrae were obtained from infected A. chilensis trees, representing the geographical range of the host. Four primer combinations were used for the AFLP analysis. Of the 332 scored bands, 12% were polymorphic. Gene diversity (h) ranged from 0·01 to 0·03; the Shannon index (I) ranged from 0·01 to 0·04. A high degree of genetic similarity was observed among the isolates (pairwise S values = 0·958–1; 0·993 ± 0·009, mean ± SD). A frequency histogram showed that most of the isolate pairs were identical. Principal coordinate analysis using three‐dimensional plots did not group any of the isolates based on their geographical origin. The low genetic diversity (within and between sites) and absence of population structure linked to geographic origin, together with the aggressiveness of the pathogen and the disease progression pattern, suggest that Paustrocedrae might have been introduced into Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号