共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Schena S. Mosca S. O. Cacciola R. Faedda S. M. Sanzani G. E. Agosteo V. Sergeeva G. Magnano di San Lio 《Plant pathology》2014,63(2):437-446
The taxonomic status of Colletotrichum gloeosporioides sensu lato (s.l.) associated with olive anthracnose is still undetermined and the pathogenic ability of this species complex is controversial. In the present study, isolates obtained from olive and provisionally identified as C. gloeosporioides s.l. on the basis of morphological and cultural features were reclassified using ITS and TUB2 as DNA barcode markers and referred to seven distinct species, recently separated within C. gloeosporioides (C. aenigma, C. gloeosporioides sensu stricto (s.s.), C. kahawae, C. queenslandicum, C. siamense and C. theobromicola) and C. boninense (C. karstii) species complexes. Furthermore, isolates of C. kahawae were ascribed to the subspecies ciggaro by analysing the GS gene. A single isolate, not in either of these two species complexes, was not identified at the species level. In pathogenicity tests on detached olive drupes some of these species, including C. aenigma, C. kahawae subsp. ciggaro, C. queenslandicum, C. siamense and C. karstii, were shown to be weakly pathogenic. Moreover, they were found very sporadically on olive. In contrast, some isolates of C. gloeosporioides s.s. and isolates of C. theobromicola proved to be virulent on both green and ripening olives. This study gives a better insight into both the aetiology and the epidemiology of olive anthracnose and might have implications for biosecurity and quarantine because C. theobromicola has never been reported in major European olive‐producing countries. 相似文献
2.
Since the 1980s a new disease has been affecting Australian lychee. Pepper spot appears as small, black superficial lesions on fruit, leaves, petioles and pedicels and is caused by Colletotrichum gloeosporioides, the same fungus that causes postharvest anthracnose of lychee fruit. The aim of this study was to determine if a new genotype of C. gloeosporioides is responsible for the pepper spot symptom. Morphological assessments, arbitrarily‐primed PCR (ap‐PCR) and DNA sequencing studies did not differentiate isolates of C. gloeosporioides from anthracnose and pepper spot lesions. The ap‐PCR identified 21 different genotypes of C. gloeosporioides, three of which were predominant. A specific genotype identified using ap‐PCR was associated with the production of the teleomorph in culture. Analysis of sequence data of ITS and β‐tubulin regions of representative isolates did not group the lychee isolates into a monophyletic clade; however, given the majority of the isolates were from one of three genotypes found using ap‐PCR, the possibility of a lychee specific group of C. gloeosporioides is discussed. 相似文献
3.
Characterization and epidemiology of Colletotrichum acutatum sensu lato (C. chrysanthemi) causing Carthamus tinctorius anthracnose 下载免费PDF全文
R. Baroncelli S. Sarrocco A. Zapparata S. Tavarini L. G. Angelini G. Vannacci 《Plant pathology》2015,64(2):375-384
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe. 相似文献
4.
P. P. Than R. Jeewon K. D. Hyde † S. Pongsupasamit O. Mongkolporn P. W. J. Taylor 《Plant pathology》2008,57(3):562-572
Fungal isolates from chilli ( Capsicum spp.) fruits in Thailand that showed typical anthracnose symptoms were identified as Colletotrichum acutatum , C . capsici and C . gloeosporioides . Phylogenetic analyses from DNA sequence data of ITS rDNA and β-tubulin ( tub 2) gene regions revealed three major clusters representing these three species. Among the morphological characters examined, colony growth rate and conidium shape in culture were directly correlated with the phylogenetic groupings. Comparison with isolates of C . gloeosporioides from mango and C . acutatum from strawberry showed that host was not important for phylogenetic grouping. Pathogenicity tests validated that all three species isolated from chilli were causal agents for chilli anthracnose when inoculated onto fruits of the susceptible Thai elite cultivar Capsicum annuum cv. Bangchang. Cross-infection potential was shown by C . acutatum isolates originating from strawberry, which produced anthracnose on Bangchang. Interestingly, only C . acutatum isolates from chilli were able to infect and produce anthracnose on PBC 932, a resistant genotype of Capsicum chinense . This result has important implications for Thai chilli breeding programmes in which PBC 932 is being hybridized with Bangchang to incorporate anthracnose resistance into chilli cultivars. 相似文献
5.
A. de Souza R. C. Delphino Carboni E. Wickert E. G. de Macedo Lemos A. de Goes 《Plant pathology》2013,62(5):1038-1047
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration. 相似文献
6.
Anthracnose of chili is caused by a complex of Colletotrichum species, with recent surveys reporting at least 28 different species implicated. However, there have been very few studies to identify the relative pathogenicity of the various species or to optimize a bioassay to assess pathogenicity. A detached Capsicum fruit bioassay to determine the pathogenicity of a diverse geographical range of isolates of Colletotrichum scovillei showed fruit maturity, host genotype, and inoculation method all interact to affect infection and rate of lesion development. On Capsicum annuum ‘Bangchang’ fruit wounded prior to inoculation, pathogenicity was consistent regardless of fruit maturity. In contrast, without wounding there was variability in pathogenicity. On the relatively resistant host Capsicum chinense PBC932, pathogenicity was dependent on both the inoculation method and the maturity stage of the fruit. In addition, lack of correlation in pathogenicity of isolates between the two Capsicum lines indicated that there was host–isolate specialization that would make prediction of pathogenicity of isolates on host difficult. In a further study, 10 species of Colletotrichum isolated from diseased chili fruits in Asia caused anthracnose symptoms on C. annuum ‘Bangchang’ under all testing conditions, with large differences in aggressiveness. C. chinense PBC932 was generally more resistant to all the species, with smaller lesions produced in different host conditions. Colletotrichum javanense and C. scovillei were highly aggressive relative to other species, especially when inoculated on nonwounded fruit. Pathotype differences were identified within multiple isolates of C. scovillei and C. siamense, the two most frequently identified pathogenic species on chili. 相似文献
7.
M. Barimani S. J. Pethybridge N. Vaghefi F. S. Hay P. W. J. Taylor 《Plant pathology》2013,62(6):1248-1257
A new pathogen of pyrethrum (Tanacetum cinerariifolium) causing anthracnose was described as Colletotrichum tanaceti based on morphological characteristics and a four‐gene phylogeny consisting of rDNA‐ITS, β‐tubulin (TUB2), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) and actin (ACT) gene sequences. The fungus produced perithecia in culture, requiring an opposite mating type isolate in a heterothallic manner. The initial infection strategy on pyrethrum leaves involved the formation of appressoria followed by production of multilobed infection vesicles in the epidermal cells. Infection and colonization then proceeded through thinner secondary hyphae, which resulted in the initial production of water‐soaked lesions followed by black necrotic lesions. The infection process was suggestive of a hemibiotrophic infection strategy. Moreover, phylogenetic analysis clearly showed that C. destructivum, C. higginsianum and C. panacicola were separate species that also had similar intracellular hemibiotrophic infection strategies as C. tanaceti, which all clustered in the C. destructivum complex. Colletotrichum spp. were detected at 1% incidence in seed of 1 of 19 seed lines, indicating the potential for seed as a source of inoculum into crops. Colletotrichum tanaceti was detected in leaf lesions from 11 of 24 pyrethrum fields surveyed between April and July 2012, at a frequency of 1·3–25·0% of lesions. Anthracnose probably contributes to the complex of foliar diseases reducing green leaf area in pyrethrum fields in Australia. 相似文献
8.
Efficacy of UV‐C radiation to reduce seedborne anthracnose (Colletotrichum acutatum) from Andean lupin (Lupinus mutabilis) 下载免费PDF全文
The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin. 相似文献
9.
苜蓿炭疽病是各苜蓿种植区分布较广的毁灭性病害。毁灭刺盘孢(Colletotrichum destructivum)是苜蓿炭疽病的主要病原菌之一。本试验研究了培养基、碳源、氮源、温度、pH、光照、湿度对毁灭刺盘孢菌菌丝生长、分生孢子产生和萌发的影响。结果表明:该菌菌丝适宜生长的培养基为PDA、PSA和V-8汁;适宜温度范围为28~36℃,最适温度为32℃;适宜pH范围为4~6。该病菌在PDA培养基上,分别以麦芽糖和蛋白胨为碳、氮源,在28℃,pH 6的条件下培养时其产孢能力最强。孢子萌发的最适碳、氮源分别为可溶性淀粉和牛肉膏、蛋白胨;最佳温度28℃;最适pH为6。相对湿度98%以上有利于孢子的萌发。持续光照利于菌丝生长、产孢和萌发。 相似文献
10.
Rong Huang Wenxiu Sun Luru Wang Qili Li Suiping Huang Lihua Tang Tangxun Guo Jianyou Mo Tom Hsiang 《Plant pathology》2021,70(8):1827-1837
Banana (Musa spp.) is one of the five most abundantly produced fruits in the world and is widely planted in tropical and subtropical areas. Banana anthracnose is one of the main diseases during the growth and postharvest storage period of banana, seriously affecting quality and production. In this study, 24 samples of banana anthracnose were collected near the cities Nanning, Qinzhou, Baise, and Chongzuo in Guangxi Province, China. Based on colony features, conidial and appressorial morphology, and sequence analysis of several genomic regions (internal transcribed spacer [ITS] region, glyceraldehyde-3-phosphate dehydrogenase [GAPDH], actin [ACT], β-tubulin [TUB2], chitin synthase [CHS-1], calmodulin [CAL], and the intergenic region of apn2 and MAT1-2-1 [ApMAT]), the 32 Colletotrichum isolates obtained were identified as five species: C. fructicola (41%), C. cliviicola (28%), C. siamense (16%), C. karstii (9%), and C. musae (6%). A conidial suspension (106 spores/ml) was used to inoculate banana seedlings for pathogenicity tests by applying 20 μl to wound sites. Lesions caused by C. musae developed most rapidly while those of C. karstii took the longest time to develop. This is the first report of C. siamense, and C. karstii associated with banana anthracnose in China, and the first report of C. fructicola and C. cliviicola associated with banana anthracnose worldwide. 相似文献
11.
Characterization of Colletotrichum truncatum from papaya,pepper and physic nut based on phylogeny,morphology and pathogenicity 下载免费PDF全文
C. Torres‐Calzada R. Tapia‐Tussell I. Higuera‐Ciapara E. Huchin‐Poot R. Martin‐Mex A. Nexticapan‐Garcez D. Perez‐Brito 《Plant pathology》2018,67(4):821-830
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C. truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico. 相似文献
12.
A quantitative real‐time PCR assay for detection of Colletotrichum lindemuthianum in navy bean seeds
Y. Y. Chen R. L. Conner C. L. Gillard D. L. McLaren G. J. Boland P. M. Balasubramanian C. Stasolla Q. X. Zhou S. F. Hwang K. F. Chang C. Babcock 《Plant pathology》2013,62(4):900-907
Bean anthracnose is a seedborne disease of common bean (Phaseolus vulgaris) caused by the fungal pathogen Colletotrichum lindemuthianum. Using seed that did not test positive for the pathogen has been proven to be an effective strategy for bean anthracnose control. To quantify the extent of anthracnose seed infection, a real‐time PCR‐based diagnostic assay was developed for detecting C. lindemuthianum in seeds of the commercial bean class navy bean. The ribosomal DNA (rDNA) region consisting of part of the18S rDNA, 5.8S rDNA, internal transcribed spacers (ITS) 1, 2 and part of the 28S rDNA of seven races of C. lindemuthianum, 21 isolates of Colletotrichum species and nine other bean pathogens were sequenced with the universal primer set ITS5/ITS4. Based on the aligned sequence matrix, one primer set and a probe were designed for a SYBR Green dye assay and a TaqMan MGB (minor groove binder) assay. The primer set was demonstrated to be specific for C. lindemuthianum and showed a high sensitivity for the target pathogen. The detection limit of both assays was 5 fg of C. lindemuthianum genomic DNA. To explore the correlation between the lesion area and the DNA amount of C. lindemuthianum in bean seed, seeds of the navy bean cultivar Navigator with lesions of different sizes, as well as symptomless seeds, were used in both real‐time PCR assays. 相似文献
13.
In recent years, anthracnose has become a significant disease affecting avocado fruit in the state of Michoacan, Mexico, where it significantly reduces fruit quality and commercial yield. Anthracnose has been assumed to involve Colletotrichum gloeosporioides and C. acutatum as causal agents. However, because of the increasing incidence of anthracnose, a more precise identification of the Colletotrichum spp. involved in this disease has become desirable. During the years 2004–2007, avocado fruits of different sizes exhibiting brown‐black and reddish spots on the pericarp and soft rot in the mesocarp, were gathered from orchards in nine counties. Fungal isolates were cultured on potato dextrose agar, and among these, 31 were selected for molecular, morphological and pathogenicity analyses. The molecular approaches used sequence typing of the internal transcribed spacer region and the partial nuclear large ribosomal subunit, allowing the unequivocal identification of C. gloeosporioides (71%), C. acutatum (16%) and C. boninense (13%). This last species has not been previously reported as being associated with anthracnose symptoms in avocado fruits anywhere in the world. Various morphological characteristics such as the size and shape of conidia were determined, as well as the conidial mass colour. Pathogenicity tests performed with all three species were conducted by inoculating healthy fruits. In each case, identical symptoms developed within 3 days of inoculation. Knowledge of the Colletotrichum populations in the Michoacan state, including the newly encountered avocado pathogen C. boninense, will facilitate further studies addressing the relationships between these Colletotrichum spp. and their avocado host. 相似文献
14.
Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria 总被引:2,自引:1,他引:2
M. M. Abang S. Winter † K. R. Green P. Hoffmann H. D. Mignouna G. A. Wolf 《Plant pathology》2002,51(1):63-71
Four forms of Colletotrichum representing three distinct virulence phenotypes were found associated with foliar anthracnose of yam in Nigeria: the highly virulent (= severity of disease) slow-growing grey (SGG); the moderately virulent fast-growing salmon (FGS); the weakly virulent fast-growing grey (FGG); and the moderately virulent fast-growing olive (FGO) morphotype. Isolates of the four forms were identified as C. gloeosporioides , based on morphology. The reaction of monoconidial cultures on casein hydrolysis medium (CHM), PCR-RFLP and sequence analysis of the internal transcribed spacer region of the ribosomal DNA (ITS1-5·8S-ITS2) were used to establish the identity of the yam anthracnose pathogen(s). All yam isolates were distinguished from C. acutatum by the absence of protease activity on CHM. On ITS PCR and enzymatic digestion of PCR products, all FGS, FGO and SGG isolates produced RFLP patterns identical to those of C. gloeosporioides reference isolates, while FGG isolates revealed unique ITS RFLP banding patterns. Sequence analysis of the ITS1 region and of the entire ITS region revealed that SGG, FGS and FGO isolates were highly similar (98–99% nucleotide identity) and showed 97–100% identity to C. gloeosporioides . Less than 93% similarity of these fungal isolates to reference C. acutatum and C. lindemuthianum isolates was observed. The molecular study confirmed that foliar anthracnose of yam is caused by C. gloeosporioides . While a high similarity was found among most C. gloeosporioides fungi from yam, isolates of the FGG form did not cluster with any previously described Colletotrichum species, and probably represent a distinct species. 相似文献
15.
海南省温郁金炭疽病的病原鉴定 总被引:1,自引:0,他引:1
温郁金炭疽病是一种重要的真菌性病害,该病主要危害叶片,初期产生水渍状的淡黄色病斑,后逐渐扩大成圆形、椭圆形或不规则形的灰褐色病斑,上面有黑色小点,病斑外面环绕一层黄色晕圈,严重时多个病斑联合造成叶片卷缩和枯死,2016年我们从海南省的温郁金种植基地采集炭疽病样本,经病原菌的分离纯化、柯赫氏法则验证、病原菌的形态特征观察及多基因谱系分析方法,确定其病原菌为郁金炭疽菌Colletotrichum curcumae(Syd.)E.J.ButlerBisby。 相似文献
16.
17.
18.
辽宁省西瓜炭疽病病原菌鉴定及生物学特性研究 总被引:1,自引:0,他引:1
针对西瓜炭疽病病原菌进行了鉴定及其生物学特性研究。通过病原菌形态学鉴定,柯赫氏法则证病,rDNA ITS测序,鉴定该病致病菌为瓜类炭疽菌(Colletotrichumorbiculare)。生物学特性测定结果表明:病菌菌丝生长最适培养基为PSA; 最适碳、氮源分别为蔗糖和NH4Cl; 最适温度为25℃; 最适pH为6; 黑暗条件利于病菌生长。病菌产孢最适培养基为西瓜茎叶煎汁培养基; 最适碳、氮源分别为蔗糖和NH42SO4; 最适温度为25℃; 最适pH为6; 黑暗条件利于孢子产生。菌丝致死温度为55℃,10min; 分生孢子致死温度为52℃,10min。 相似文献
19.
Species from the Colletotrichum acutatum,Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia 下载免费PDF全文
A. M. Rincón M. Cárdenas G. Danies L. López‐Kleine S. Restrepo P. Jiménez 《Plant pathology》2016,65(2):227-237
Colletotrichum species cause typical anthracnose symptoms in tree tomato and mango. To characterize species of Colletotrichum in these two crops in Colombia, 91 isolates were collected from several localities. Phylogenetic analyses using nuclear gene sequencing of the ITS region and the glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) gene allowed the identification of three groups: acutatum, gloeosporioides and boninense. These three groups were further confirmed using two additional genomic regions (chitin synthase 1 and actin) for 30 isolates representative of the three previously identified complexes and one genomic region (ApMat) for the Colletotrichum gloeosporioides complex strains. The entire approach permitted a robust strain identification that allowed phylogenetic species recognition (PSR) based on the identification of well‐supported monophyletic clades and concordance between individual and multilocus phylogenies. Morphological and physiological assays were also conducted. Isolates that were morphologically identified as C. gloeosporioides showed high phenotypic diversity. Pathogenicity data revealed a considerable degree of host preference. 相似文献
20.
C. Mota‐Capitão A. P. Ramos J. Neves‐Martins L. Guerra‐Guimarães V. Várzea M. C. Silva S. Sreenivasaprasad H. Oliveira 《Plant pathology》2011,60(3):483-495
Anthracnose is an important disease affecting mature olive fruits, causing significant yield losses, and poor fruit and oil quality. In Portugal, high anthracnose incidence was recorded during 2003–2007 with 41% of 908 orchards surveyed displaying disease symptoms. In another 14% of the orchards, the pathogen was recorded in symptomless plants. Disease severity was on average 36%, frequently reaching 100%. In Portugal, anthracnose is endemic to neglected orchards of susceptible cultivars, but under favourable conditions it can also severely affect less susceptible cultivars. Pathogens were genetically heterogeneous, with Colletotrichum acutatum genetic group A2 as the most frequent (80%), followed by group A4 (12%) and group A5 along with C. gloeosporioides (3–4%), while groups A3 and A6 of C. acutatum were sporadic. Important geographic variations were observed in the frequencies of these populations, accompanied by year‐to‐year populational shifts. Epidemiology and histopathology studies showed the presence of the pathogens on vegetative organs year‐round, particularly on olive leaves and branches, and on weeds. These represent inoculum reservoirs where secondary conidiation occurs, and conidia are then dispersed by spring rains reaching flowers and young fruits or by autumn rains reaching pre‐mature fruits. Unripe fruits were colonized without showing symptoms up to penetration of the cuticle, but further colonization and symptom production was completed only as fruits matured. These findings challenge current control practices, particularly the timing of fungicide treatment, and contribute to improved disease management. 相似文献