共查询到20条相似文献,搜索用时 32 毫秒
1.
The development of the basidiomycete Moniliophthora perniciosa in resistant and susceptible Theobroma cacao genotypes was analysed. The infection process leading to broom formation in shoot apexes was characterized by studying the kinetics of basidiospore germination, mode of penetration and colonization of the pathogen. Both resistant and susceptible cacao genotypes were inoculated with M. perniciosa and kept in the greenhouse for 90 days, explants were collected, treated for histological studies and meristematic tissues were observed by electron and light microscopy. Variation in the kinetics of germination between the cacao genotypes was detected 4 h after inoculation. The fungal penetration occurred through the star‐shaped trichome base, natural openings on the cuticular surface and stomata. Host responses between genotypes were found to be different. Compared with non‐infected plants, the swelling of all the stem tissues was evident at 60 days after inoculation. In the susceptible genotype, typical symptoms developed and fungal colonization was more intense than in resistant genotypes, which showed little or no fungal colonization. The investigations reported herein provide an important step in understanding the pattern of pre‐ and post‐penetration events of M. perniciosa in cacao genotypes with different levels of resistance to this disease. 相似文献
2.
Population structure and migration of the witches’ broom pathogen Moniliophthora perniciosa from cacao and cultivated and wild solanaceous hosts in southeastern Brazil
下载免费PDF全文

N. G. R. B. Patrocínio P. C. Ceresini L. I. S. Gomes M. L. V. Resende E. S. G. Mizubuti K. P. Gramacho 《Plant pathology》2017,66(6):900-911
Moniliophthora perniciosa, causal agent of witches’ broom disease in cacao plantations in South America and the Caribbean Islands, has co‐evolved with its host cacao, but the pathogen has also emerged in many solanaceous hosts in Brazil, including economically important food crops and wild species. This study was carried out to: (i) determine the existence of host subpopulations of M. perniciosa in Brazil; (ii) estimate gene and genotypic diversity of M. perniciosa host subpopulations infecting solanaceous hosts in southeastern Bahia and Minas Gerais states, Brazil; and (iii) estimate the amount and directionality of historical migration of M. perniciosa subpopulations. Up to 203 M. perniciosa isolates collected from solanaceous hosts with symptoms from Bahia and Minas Gerais states in Brazil and from Theobroma spp. (cacao) and Herrania spp. were characterized with 11 microsatellite markers. Factorial correspondence analyses, minimum‐spanning network and Bayesian clustering revealed genetic clusters associated with their host of origin. Significant subpopulation differentiation was evident (ΦST = 0.30, P ≤ 0.05) among M. perniciosa host subpopulations. Most of the multilocus microsatellite genotypes (MLMGs) were host‐specific, with few MLMGs shared among subpopulations. Pairwise comparisons among M. perniciosa host subpopulations were significant, except between jurubeba (Solanum paniculatum) and cultivated solanaceous subpopulations. The combined analyses rejected the null hypothesis that M. perniciosa in Brazil is a single genetic population not structured by host. These findings support a scenario of introduction and subsequent adaptation to solanaceous hosts that should be taken into consideration to improve mitigation and management of M. perniciosa. 相似文献
3.
The immunodominant membrane protein Imp of several phytoplasmas within the ‘Candidatus Phytoplasma aurantifolia’ (16Sr‐II) group was investigated. Eighteen isolates from Iran (11), East Asia (5), Africa (1) and Australia (1) clustered into three phylogenetic subgroups (A, B and C) based on the 16S rDNA and imp genes, regardless of geographic origin. The imp gene sequences were variable, with more non‐synonymous than synonymous mutations (68 vs 20, respectively), even though many of the non‐synonymous ones (75%) produced conservative amino acid replacements. Eight codon sites on the extracellular region of the protein were under positive selection, with most of them (75%) coding for non‐conservative amino acid substitutions. Full‐length (21 kDa) and truncated (16 kDa) Imp proteins of two economically important Iranian phytoplasmas [lime witches’ broom (LWB) and alfalfa witches’ broom (AlWB‐F)] were expressed as His‐tagged recombinant proteins in Escherichia coli. An antiserum raised against full‐length recombinant LWB Imp reacted in western blots with membrane proteins extracted from LWB‐infected periwinkle and lime, indicating that Imp (19 kDa) is expressed in infected plants and is a membrane‐associated protein. The same polyclonal antibody also detected native Imp in proteins from periwinkles infected by phytoplasmas closely related to LWB (subgroup C) only, confirming phylogenetic clustering based on 16S rDNA and imp genes. Imp proteins of LWB and AlWB‐F isolates were also recognized by an antiserum raised against an enriched preparation of AlWB‐F phytoplasma cells, demonstrating the antigenic properties of this protein. 相似文献
4.
L. L. Loguercio L. S. Santos G. R. Niella R. A. C. Miranda J. T. de Souza R. T. Collins A.W.V. Pomella † 《Plant pathology》2009,58(6):1104-1115
The collective impact of several environmental factors on the biocontrol activity of Trichoderma stromaticum ( Ts ) against Moniliophthora perniciosa ( Mp ), the cause of cacao witches' broom disease, was assessed under field conditions of shaded cacao ( Theobroma cacao ) in south-eastern Bahia, Brazil. Biocontrol experiments were performed adjacent to an automated weather station, with sensors and Ts -treated brooms placed at different canopy heights. Sporulation occurred at the same dates for all Ts isolates, but in different quantities. Broom moisture >30%, air temperature of approximately 23 ± 3°C, relative humidity >90%, solar radiation intensities <0·12 KW m− ² and wind speed near zero were the key environmental parameters that preceded Ts sporulation events. A multiple logistic regression indicated that these weather variables combined were capable of distinguishing sporulation from non-sporulation events, with a significant effect of wind speed. Analyses of environmental factors at ground level indicated similar pre-sporulation conditions, with a soil moisture content above a threshold of 0·34 m3 m−3 preceding all sporulation events. The sporulation of five selected Ts isolates was compared at four different canopy heights. Isolates responded differently to weather variation in terms of sporulation and antagonism to Mp at different canopy levels, indicating that different microclimates are established along the vertical profile of a shaded cacao plantation. The potential of these findings for development of predictive mathematical models and disease-management approaches is discussed. 相似文献
5.
The presence of phytoplasmas in seven coniferous plant species (Abies procera, Pinus banksiana, P. mugo, P. nigra, P. sylvestris, P. tabuliformis and Tsuga canadensis) was demonstrated using nested PCR with the primer pairs P1/P7 followed by R16F2n/R16R2. The phytoplasmas were detected in pine trees with witches’ broom symptoms growing in natural forest ecosystems and also in plants propagated from witches’ brooms. Identification of phytoplasmas was done using restriction fragment length polymorphism analysis (RFLP) of the 16S rDNA gene fragment with AluI, MseI and RsaI endonucleases. All samples showed RFLP patterns similar to the theoretical pattern of ‘Candidatus Phytoplasma pini’, based on the sequence of the reference isolate Pin127S. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Comparison of the 16S rDNAs obtained revealed high (99·8–100%) nucleotide sequence identity between the phytoplasma isolates. The isolates were also closely related to four other phytoplasma isolates found in pine trees previously. Based on the results of RFLP and sequence analyses, the phytoplasma isolates tested were classified as members of the ‘Candidatus Phytoplasma pini’, group 16SrXXI. 相似文献
6.
G. M. Griffith J. N. Hedger 《European journal of plant pathology / European Foundation for Plant Pathology》1993,99(4):227-230
A novel method for the production of basidiocarps from the mycelia ofCrinipellis perniciosa is described. This involved the colonization of a bran-vermiculite medium with pure culture of the fungus, prior to application of a peat-based casing. Basidiocarp production was induced by hanging the cultures in a cabinet where they were subjected to a daily cycle of wetting and drying. The method was successfully and reproducibly used to fruit isolates of all four known biotypes of the fungus within 10–16 weeks of inoculation. 相似文献
7.
A. G. Al‐Ghaithi A. M. Al‐Sadi M. S. Al‐Hammadi R. M. Al‐Shariqi R. A. Al‐Yahyai I. H. Al‐Mahmooli C. M. Carvalho S. L. Elliot S. A. Hogenhout 《Plant pathology》2017,66(8):1380-1388
Witches’ broom disease (WBD), caused by ‘Candidatus Phytoplasma aurantifolia’, is a serious disease of acid lime (Citrus aurantifolia) in Oman and the UAE. However, little is known about the distribution of phytoplasma and the expression of WBD symptoms in different geographical locations. A survey was carried out in 18 districts in Oman and the UAE covering 143 orchards and 5823 acid lime trees. ‘Candidatus Phytoplasma aurantifolia’ was detected in acid lime in all the 18 surveyed districts. However, the development of typical symptoms of WBD was only observed in 12 districts. Districts in which the phytoplasma was present but symptoms were not expressed were located either in desert areas or in areas characterized by semitropical conditions. Phylogenetic analysis of 16 phytoplasma isolates from trees developing WBD symptoms and six phytoplasma isolates from trees with no WBD symptoms showed that all isolates share an identical 16S rRNA sequence, belonging to subgroup II‐B. Quantitative PCR analysis showed that the concentration of phytoplasma is significantly higher (8800–801 000 copies) in leaves developing WBD symptoms compared to 2–268 copies in symptomless leaves from the same trees and 8–874 copies in acid lime trees from areas where disease symptoms were not expressed. The lack of expression of WBD symptoms under certain environmental conditions may suggest that symptom development and phytoplasma are affected by certain unfavourable environmental conditions. These findings could provide a basis for managing WBD through encouraging lime cultivation under climatic conditions less conducive to WBD symptom expression. 相似文献
8.
Seasonality plays an important role in the dynamics of infectious disease. For vector‐borne pathogens, the effects of seasonality may be manifested in the variability in vector abundance, vector infectiousness, and host‐infection dynamics over the year. The relative importance of multiple sources of seasonality on the spread of a plant pathogen, Xylella fastidiosa, into vineyards was explored. Observed seasonal population densities of the primary leafhopper vector, Graphocephala atropunctata, from 8 years of surveys in northern California were incorporated into a model of primary spread to estimate the risk of pathogen infection under different scenarios regarding seasonality in vector natural infectivity (i.e. constant or increasing over the season) and grapevine recovery from infection (i.e. none or seasonal recovery). The extent to which local climatic conditions affect risk estimates via differences in vector abundance was investigated. Seasonal natural infectivity, seasonal recovery, and especially the combination, reduced (up to 8‐fold on average) within‐season and cumulative yearly estimates of pathogen spread. Estimated risk of infection also differed greatly among years due to large differences in vector abundance, with wet and moderate winter and spring conditions favouring higher G. atropunctata abundance. Seasonal variation of the pathogen–vector interaction may play an important role in the dynamics of disease in vineyards, reducing the potential prevalence from what it could be in their absence. Moreover, climate, by affecting sharpshooter leafhopper abundance or activity, may influence Pierce’s disease dynamics. 相似文献
9.
Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America
下载免费PDF全文

E. Castañares M. I. Dinolfo E. M. Del Ponte D. Pan S. A. Stenglein 《Plant pathology》2016,65(6):930-939
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (n = 43 isolates), Brazil (n = 35), and Uruguay (n = 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (n = 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates. 相似文献
10.
Frequency and occurrence of the carrot pathogen ‘Candidatus Liberibacter solanacearum’ haplotype C in Finland
下载免费PDF全文

M. Haapalainen P. Kivimäki S. Latvala M. Rastas A. Hannukkala L. Jauhiainen A. Lemmetty M. Pirhonen A. Virtanen A. I. Nissinen 《Plant pathology》2017,66(4):559-570
Occurrence of ‘Candidatus Liberibacter solanacearum’ (CLso) was studied in field‐grown carrots (Daucus carota) in different regions of Finland. In addition, the frequency of CLso in carrots and in field populations of its vector, the carrot psyllid (Trioza apicalis), was studied in southwestern Finland. CLso was detected in six of the seven regions where the main carrot cultivation areas are located. The highest disease incidence was found in southwestern Finland, in the area where this carrot pathogen was originally found. In the Tavastia Proper and Southwest Finland regions, CLso was detected in 26 out of 30 randomly chosen fields inspected in 2013 and 2014, and in a third of those fields more than 10% of plants showed symptoms. Of those carrots showing both psyllid feeding‐associated leaf curling and CLso infection‐associated leaf discolouration symptoms, 77% were CLso positive in the PCR test. Some symptomless carrots from the affected fields also tested positive. Of the carrot psyllid individuals collected from the same area, 60% were CLso positive. Elsewhere, disease incidence was variable in South Ostrobothnia in western Finland and low but established in South Savonia in eastern Finland. CLso was not detected in the North Ostrobothnia region. Sequencing of the amplified DNA fragments confirmed that the bacteria in the carrot samples from different areas within Finland all represented CLso haplotype C. The frequent occurrence and wide distribution of this pathogen, transmitted by a psyllid that does not migrate over long distances, suggest that it is persistent in Finland. 相似文献
11.
The troubled history of the two major diseases of the chocolate tree (Theobroma cacao) in South America, witches' broom and frosty pod, is reviewed, concentrating on critical aspects of the aetiology as well as the phylogeny of the causal agents. Both diseases are caused by sister species within the genus Moniliophthora, belonging to the Marasmiaceae family of mushrooms. The witches' broom pathogen, Moniliophthora perniciosa, evolved on the Amazonian side of the Andes and induces brooms not only in cacao and its relatives in the genera Theobroma and Herrania (Malvaceae), but also in species in the plant families Bignoniaceae, Malpighiaceae and Solanaceae, on which the mushrooms (basidiomata) are produced. Moniliophthora roreri, the type species of the genus, evolved as a pod pathogen on endemic Theobroma species on the western side of the northern Andean Cordillera. Because Moniliophthora was described originally as the asexual form of an unknown basidiomycete, the generic diagnosis is amended here to accommodate species with agaricoid basidiomata. In addition, the new variety M. roreri var. gileri is designated for the morphotype occurring on Theobroma gileri, in northwest Ecuador. Cytology studies indicate that the supposed conidia of M. roreri are, in fact, sexual spores (meiospores) and it is posited that the fruiting structure represents a much‐modified mushroom. Finally, based on preliminary data from pathogenicity testing, it is hypothesized that the true causal agent of both diseases is an as yet unidentified infectious agent vectored into the host by the fungus. 相似文献
12.
J. Wang X.‐P. Zhu R. Gao C.‐L. Lin Y. Li Q.‐C. Xu C.‐G. Piao X.‐D. Li H.‐F. Li G.‐Z. Tian 《Plant pathology》2010,59(5):972-981
This study determined the tuf gene sequence of the phytoplasma specific to paulownia witches’‐broom from Nanyang, China (hereby designated PaWB‐Ny). The PaWB‐Ny tuf gene was 1185 nucleotides in length and confirmed that the phytoplasma belongs to subgroup 16SrI‐D of aster yellows. Three characteristic GTP‐binding protein motifs were identified based on the peptide deduced from the tuf gene sequence. Results suggested that the elongation factor EF‐Tu was localized in the cytoplasm and lacked hydrophobic transmembrane domains. Antibodies against PaWB‐Ny EF‐Tu were prepared by rabbit immunization with glutathione‐S‐transferase (GST)‐tagged EF‐Tu fusion protein expressed in Escherichia coli. EF‐Tu exhibited a molecular weight of ~43 kDa and was detected in PaWB‐infected paulownia plants by western blot analysis. Indirect enzyme‐linked immunosorbent assays (ELISA) and dot blotting analyses were performed with freezing and thawing treatments during antigen preparation. Dilution of extracts to an appropriate scale significantly reduced non‐specific reactions. The resultant PaWB EF‐Tu antibody reacted with antigens from plants infected with periwinkle virescence and chinaberry tree witches’‐broom phytoplasmas, but not those infected with jujube witches’‐broom or bishopwood witches’‐broom phytoplasma. The EF‐Tu was characteristically localized within the phytoplasmal cytoplasm of infected plant phloem tissues. 相似文献
13.
Population structure,genetic diversity,and sexual state of the rice brown spot pathogen Bipolaris oryzae from three Asian countries
下载免费PDF全文

A. Ahmadpour C. Castell‐Miller M. Javan‐Nikkhah M. R. Naghavi F. P. Dehkaei Y. Leng K. D. Puri S. Zhong 《Plant pathology》2018,67(1):181-192
Bipolaris oryzae causes brown spot in rice (Oryza sativa) inflicting substantial grain yield losses worldwide. Knowledge of the population structure, genetic diversity and sexual recombination of the fungal pathogen can help to implement effective disease management strategies. In this study, B. oryzae isolates sampled from Iran, the Philippines and Japan were analysed with 12 simple‐sequence repeat (SSR) markers, newly developed from the genome sequence of the fungus. Among the 288 B. oryzae isolates genotyped, 278 unique haplotypes were identified. High genotype numbers (richness) with even distribution (evenness) were found within the collection sites. Both mating types, MAT1‐1 and MAT1‐2, were present in each collection area, and the sexual state was induced under controlled conditions with production of viable ascospores. However, the tests of linkage disequilibrium rejected of the hypothesis of random mating. Discriminant analysis of principal components (DAPC) revealed that the B. oryzae collection formed three clusters, each consisting of isolates from different collection sites. Analysis of molecular variance (amova ) showed that genetic variation among clusters was 18.7%, with the rest of the variation distributed within clusters (RST = 0.187, P < 0.001). Statistically significant pairwise genetic differentiation was found between the clusters. These results show that Asian B. oryzae isolates are genetically diverse, and, overall, distributed in three groups. These findings will be helpful in managing the disease and guide the use of representative isolates needed for selection of resistant rice varieties. 相似文献
14.
Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East
下载免费PDF全文

R. Drenkhan H. Solheim A. Bogacheva T. Riit K. Adamson T. Drenkhan T. Maaten A. M. Hietala 《Plant pathology》2017,66(3):490-500
Dieback of European ash was first observed in Europe in the early 1990s. The disease is caused by the invasive ascomycete Hymenoscyphus fraxineus, proposed to originate from Far East Asia, where it has been considered a harmless saprotroph. This study investigates the occurrence of H. fraxineus in tissues of local ash species in the Russian Far East, and assesses its population‐specific genetic variation by ITS sequencing. Shoot dieback symptoms, characteristic of H. fraxineus infection on European ash, were common, but not abundant, on Fraxinus mandshurica and Fraxinus rhynchophylla trees in Far East Russia. High levels of pathogen DNA were associated with necrotic leaf tissues of these ash species, indicating that the local H. fraxineus population is pathogenic to their leaves. However, the low levels of H. fraxineus DNA detected in shoots with symptoms, the failure to isolate this fungus from such tissues, and the presence of other fungi with pathogenic potential in shoots with symptoms indicate that local H. fraxineus strains may not be responsible (or their role is negligible) for the observed ash shoot dieback symptoms in the region. Conspicuous differences in ITS rDNA sequences detected between H. fraxineus isolates from Russian Far East and European populations suggest that the current ash dieback epidemic in Europe might not directly originate from the Russian Far East. Revision of the herbarium material shows that the earliest specimen of H. fraxineus was collected in 1962 from the Russian Far East and the oldest H. fraxineus specimen of China was collected in 2004. 相似文献
15.
M. L. Vélez M. P. A. Coetzee M. J. Wingfield M. Rajchenberg A. G. Greslebin 《Plant pathology》2014,63(1):212-220
Phytophthora austrocedrae is a recently discovered pathogen that causes severe mortality of Austrocedrus chilensis in Patagonia. The high level of susceptibility of the host tree, together with the distribution pattern of the pathogen, have led to the hypothesis that P. austrocedrae was introduced into Argentina. The aim of this study was to assess the population structure of P. austrocedrae isolates from Argentina in order to gain an understanding of the origin and spread of the pathogen. Genetic diversity was determined based on amplified fragment length polymorphisms (AFLPs). In total, 48 isolates of P. austrocedrae were obtained from infected A. chilensis trees, representing the geographical range of the host. Four primer combinations were used for the AFLP analysis. Of the 332 scored bands, 12% were polymorphic. Gene diversity (h) ranged from 0·01 to 0·03; the Shannon index (I) ranged from 0·01 to 0·04. A high degree of genetic similarity was observed among the isolates (pairwise S values = 0·958–1; 0·993 ± 0·009, mean ± SD). A frequency histogram showed that most of the isolate pairs were identical. Principal coordinate analysis using three‐dimensional plots did not group any of the isolates based on their geographical origin. The low genetic diversity (within and between sites) and absence of population structure linked to geographic origin, together with the aggressiveness of the pathogen and the disease progression pattern, suggest that P. austrocedrae might have been introduced into Argentina. 相似文献
16.
Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection
下载免费PDF全文

This study characterized the early infection and establishment of the sheath blight pathogen Rhizoctonia solani on a tolerant rice variety, Swarnadhaan (IET 5656), and a susceptible variety, Swarna (MTU 7029). Assays using whole plants showed that disease severity was higher in Swarna than Swarnadhaan. In a detached leaf assay, Swarnadhaan showed a disease index that was 50% less than that with Swarna. Rhizoctonia solani exhibited different growth behaviour in the tolerant and susceptible varieties. The pathogen showed more hyphal growth in the susceptible host than in the tolerant variety. It also showed profuse branching, making intimate contact with the host surface to form more inter‐ and intracellular structures, and greater sclerotial development in the susceptible host compared to the tolerant one. Using light and scanning electron microscopy, it was observed for the first time that the pathogen could intercept host surface structures and use these for anchorage or penetration. Transformed R. solani, expressing green fluorescent protein, was observed using confocal laser scanning microscopy to investigate pathogen behaviour, including the formation of infection cushions and subsequent colonization of the host tissues. This is the first ultrastructural report to characterize the differential behaviour of the sheath blight pathogen in the vicinity and within tolerant and susceptible rice plants. 相似文献
17.
Effect of azole fungicide mixtures,alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici
下载免费PDF全文

The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (P = 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action. 相似文献
18.
C. M. Andrade M. L. P. Tinoco A. F. Rieth F. C. O. Maia F. J. L. Aragão 《Plant pathology》2016,65(4):626-632
Sclerotinia sclerotiorum is a necrotrophic fungus that causes a devastating disease called white mould, infecting more than 450 plant species worldwide. Control of this disease with fungicides is limited, so host plant resistance is the preferred alternative for disease management. However, due to the nature of the disease, breeding programmes have had limited success. A potential alternative to developing necrotrophic fungal resistance is the use of host‐induced gene silencing (HIGS) methods, which involves host expression of dsRNA‐generating constructs directed against genes in the pathogen. In this study, the target gene chosen was chitin synthase (chs), which commands the synthesis of chitin, the polysaccharide that is a crucial structural component of the cell walls of many fungi. Tobacco plants were transformed with an interfering intron‐containing hairpin RNA construct for silencing the fungal chs gene. Seventy‐two hours after inoculation, five transgenic lines showed a reduction in disease severity ranging from 55·5 to 86·7% compared with the non‐transgenic lines. The lesion area did not show extensive progress over this time (up to 120 h). Disease resistance and silencing of the fungal chs gene was positively correlated with the presence of detectable siRNA in the transgenic lines. It was demonstrated that expression of endogenous genes from the very aggressive necrotrophic fungus S. sclerotiorum could be prevented by host induced silencing. HIGS of the fungal chitin synthase gene can generate white mould‐tolerant plants. From a biotechnological perspective, these results open new prospects for the development of transgenic plants resistant to necrotrophic fungal pathogens. 相似文献
19.
N. A. van der Merwe E. T. Steenkamp C. Rodas B. D. Wingfield M. J. Wingfield 《Plant pathology》2013,62(3):642-648
The purpose of this study was to test the hypothesis that Chrysoporthe cubensis on native trees in South America could be the source of the pathogen that causes severe stem cankers and often mortality in commercially propagated Eucalyptus trees. This was done by investigating populations originating from two adjacent Eucalyptus (Myrtaceae) plantations in Colombia, and wild Miconia rubiginosa trees (Melastomataceae) growing alongside these stands. Polymorphic microsatellite markers were used to quantify allele sizes in 20 and 39 isolates from the two Eucalyptus stands and 32 isolates from adjacent M. rubiginosa trees. Gene and genotypic diversities were calculated from these data, and population differentiation and assignment tests were performed to ascertain whether the populations were genetically different. Results showed that there were no differences between any of the populations using these techniques, and that they can be treated as a single population. Therefore, the results support the hypothesis that host switching has occurred in C. cubensis in Colombia. 相似文献
20.
A yellows disease system with differing principal host plants for the obligatory pathogen and its vector
下载免费PDF全文

R. Sharon A. R. Harari T. Zahavi R. Raz M. Dafny‐Yelin M. Tomer C. Sofer‐Arad P. G. Weintraub V. Naor 《Plant pathology》2015,64(4):785-791
A stolbur‐type phytoplasma is the putative pathogen of grapevine yellows disease that causes economic damage to vineyards in most growing areas around the world. The pathogen is known to be transmitted to vines by two planthoppers, Hyalesthes obsoletus and Reptalus panzer; the latter is found in Europe but has not yet been observed in Israel. The establishment of a vector–pathogen–plant relationship requires that the pathogen and the vector meet on a shared host plant. This does not happen in the ecosystem examined here, where two different principal host plants for the obligate pathogen and its vector exist: the pathogen is established on vines, while its vector, H. obsoletus, develops on Vitex agnus‐castus. The present study verified that: (i) the vector cannot complete its life cycle on vines; (ii) V. agnus‐castus does not grow in the immediate vicinity of vines, and does not harbour the pathogen; and (iii) the pathogen is not vertically transmitted from mother to offspring. Moreover, in a thorough search of plants in vine growing areas, no other plants were found that host both the vector and the pathogen. However, it was found that the planthopper can acquire the phytoplasma from infected vines. Nonetheless, this does not prove the ability of the planthopper to further transmit the pathogen to vines and does not explain the presence of the vector on the non‐preferred vines. Thus, the enigma of the pathogen–vector–host triangle in this system remains unresolved. 相似文献