首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
RNA干扰技术在动物抗病育种中的应用前景   总被引:1,自引:0,他引:1  
动物疾病尤其是病毒性疾病一直是畜牧业亟待解决的问题,随着转基因技术的出现,生产遗传修饰动物来抵抗特定传染病的策略备受关注。从长远利益来看,这种基因工程动物从遗传本质上提高了畜禽的抗病能力。转基因抗病育种在未来可能成为减少动物传染性疾病的最有前途的方法之一。RNA干扰是双链RNA特异性诱导同源基因表达沉默的现象。研究证实,RNA干扰在细胞水平,小鼠模型以及动物个体的抗病毒效果是非常明显的,RNA干扰技术作为抗病毒策略为生产抗病转基因动物提供了光明的应用前景。RNA干扰技术介导的抗病转基因动物的研究相继取得了阶段性进展,抗疯牛病转基因羊和牛以及抗内源性逆转录病毒猪已经成功获得,虽然目前获得的转基因动物类型有限,但为继续生产抗病转基因家畜提供了有效的参考和依据。  相似文献   

2.
动物乳腺生物反应器(mammary gland bioreactor),又称动物个体乳腺表达系统,它属于转基因动物的范畴,其核心内容是通过各种转基因技术,将乳腺组织特异性启动子驱动的外源基因,在动物乳腺组织高效表达,在乳汁中生产目的产品。它是20世纪90年代初才出现的生物技术,通过回收奶就可以提取有重要价值的生物活性蛋白。在一般情况下,这种特异性表达方式更安全、可靠。本文主要简单介绍动物乳腺生物反应器的一些基本情况,以及我国的研究和产业化发展情况。1动物乳腺生物反应器的基本情况1.1定义乳腺生物反应器一般指用重组DNA技术和转基因技术,将…  相似文献   

3.
动物预防用DNA疫苗又称核酸疫苗或基因疫苗,是编码免疫原或与免疫原相关的真核表达质粒DNA(有时也可是RNA),它可经一定途径进入动物体内,被动物宿主细胞摄取后能转录和翻译表达出抗原蛋白,此抗原蛋白能够刺激机体产生非特异性和特异性两种免疫应答反应,从而起到免疫保护作用。  相似文献   

4.
反义技术就是根据碱基互补原理 ,利用人工或生物合成的特异互补的DNA或RNA片段 (或其修饰产物 )抑制或封闭基因表达的技术 ,包括反义RNA技术 ,核酶技术和反义寡核苷酸技术。文中介绍了反义RNA技术、核酶技术和反义寡核苷酸技术等反义核酸技术的原理 ,以及反义核酸技术在基因和某些特定蛋白的研究 ,在肿瘤性疾病、病毒性疾病和转基因研究等预防医学领域方面的应用  相似文献   

5.
转基因动物的安全性   总被引:1,自引:0,他引:1  
转基因动物(transgenic animal)是指这种动物基因组中稳定地整合有以实验方法所导人的外源基因(或特定DNA片段)的动物。随着转基因动物技术的发展,转基因动物已在促进动物生长,改善产品品质,动物抗病育种,生产药用蛋白、生产营养保健(医疗)品和可用于人体器官移植的动物器官等领域的应用上,均显示出巨大的经济效益和社会效益。但伴  相似文献   

6.
1.转基因食品 转基因技术主要是指利用重组DNA技术和物理、化学及生物学等方法把重组DNA分子导入生物体的技术。应用转基因技术构建的生物称为转基因生物,包括转基因植物、转基因动物和转基因微生物。因此,通俗地讲,转基因食品就是利用转基因生物生产和加工的食品。与转基因植物、动物和微生物相适应,转基因食品也可以进一步分为转基因植物食品、动物食品  相似文献   

7.
1特点 DNA疫苗又称核酸疫苗或基因疫苗,是编码免疫原或与免疫原相关的真核表达质粒DNA(或RNA)。可经一定途径进入动物体内,被宿主细胞摄取后转录和翻译,表达出抗原蛋白,此抗原蛋白能刺激机体产生非特异性和特异性免疫应答反应,从而起到免疫保护作用。  相似文献   

8.
转基因动物研究进展   总被引:9,自引:0,他引:9  
本文讨论了DNA显微注射法、载体法、细胞培养法和胚泡细胞注入法等产生转基因动物的方法,以Southern印迹为主,包括PCR阳性产物测序法等转基因动物检测方法;乳腺表达系统和基质结合区(MAR)等转基因动物表达系统以及转基因动物在分子生物学、畜牧兽医以及医学等领域中的应用。  相似文献   

9.
精子因在受精过程中的独特作用,而被公认为是转移外源DNA的理想载体,且操作简便,成本低廉,危险隐患相对较低,近十几年来的研究结果表明精子载体介导法可以得到转基因阳性动物.本文对精子载体转基因方法、精子载体转基因的机理、影响精子与外源DNA结合的因素以及外源DNA在宿主动物中的存在形式等方面进行了论述,并对精子作为载体的研究方向和前景给予了预测.  相似文献   

10.
转基因动物制作方法的研究进展及其在蚕学研究中的应用   总被引:4,自引:0,他引:4  
转基因动物是指用实验导入的方法将外源基因在染色体基因内稳定整合并能稳定表达的一类动物.它的研究是建立在经典遗传学、分子遗传学、结构遗传学和DNA重组技术的基础上,为当前分子生物学研究的热点之一.  相似文献   

11.
为提高慢病毒载体构建水平,提高转基因整体效率,作者综述了慢病毒载体结构及围绕改善生物安全性、提高目标基因装载量、扩大宿主范围而进行的慢病毒载体改造研究发展历程,指出新型慢病毒载体去除了病毒所有辅助基因,引入了外源调控序列,替换了包膜蛋白,大大提高了慢病毒载体的安全性、基因转移效率和表达效率,使宿主细胞类型更广范,而下游表达载体转染方法的研究又为转基因方法的集成与优化奠定了基础。慢病毒载体制备与多种转基因技术的优化集成,将有助于发展简便、高效、经济的转基因新技术,提高转基因技术的整体水平。  相似文献   

12.
The introduction of specific genes into the genome of farm animals and its stable incorporation into the germ line has been a major technological advance in agriculture. Transgenic technology provides a method to rapidly introduce "new" genes into cattle, swine, sheep, and goats without crossbreeding. It is a more extreme methodology, but in essence, not really different from crossbreeding or genetic selection in its result. Methods to produce transgenic animals have been available for more than 20 yr, yet recently lines of transgenic livestock have been developed that have the potential to improve animal agriculture and benefit producers and/or consumers. There are a number of methods that can be used to produce transgenic animals. However, the primary method to date has been the microinjection of genes into the pronuclei of zygotes. This method is one of an array of rapidly developing transgenic methodologies. Another method that has enjoyed recent success is that of nuclear transfer or "cloning." The use of this technique to produce transgenic livestock will profoundly affect the use of transgenic technology in livestock production. Cell-based, nuclear transfer or cloning strategies have several distinct advantages for use in the production of transgenic livestock that cannot be attained using pronuclear injection of DNA. Practical applications of transgenesis in livestock production include enhanced prolificacy and reproductive performance, increased feed utilization and growth rate, improved carcass composition, improved milk production and/or composition, and increased disease resistance. One practical application of transgenics in swine production is to improve milk production and/or composition. To address the problem of low milk production, transgenic swine over-expressing the milk protein bovine alpha-lactalbumin were developed and characterized. The outcomes assessed were milk composition, milk yield, and piglet growth. Our results indicate that transgenic overexpression of milk proteins may provide a means to improve swine lactation performance.  相似文献   

13.
Transgenic animal models have been used in small numbers in gene function studies in vivo for a period of time, but more recently, the use of a single transgenic animal model has been approved as a second species, 6-month alternative (to the routine 2-year, 2-animal model) used in short-term carcinogenicity studies for generating regulatory application data of new drugs. This article addresses many of the issues associated with the creation and use of one of these transgenic models, the rasH2 mouse, for regulatory science. The discussion includes strategies for mass producing mice with the same stable phenotype, including constructing the transgene, choosing a founder mouse, and controlling both the transgene and background genes; strategies for developing the model for regulatory science, including measurements of carcinogen susceptibility, stability of a large-scale production system, and monitoring for uniform carcinogenicity responses; and finally, efficient use of the transgenic animal model on study. Approximately 20% of mouse carcinogenicity studies for new drug applications in the United States currently use transgenic models, typically the rasH2 mouse. The rasH2 mouse could contribute to animal welfare by reducing the numbers of animals used as well as reducing the cost of carcinogenicity studies. A better understanding of the advantages and disadvantages of the transgenic rasH2 mouse will result in greater and more efficient use of this animal model in the future.  相似文献   

14.
转基因动物研究进展   总被引:7,自引:0,他引:7  
转基因动物技术始于 2 0世纪 80年代 ,近 3 0年来 ,随着研究的深入 ,转基因动物的制作技术得到了突破性的发展。最初的原核注射法是应用最普遍、最可靠、效果最稳定的一种方法。但该方法存在价格昂贵 ,整合率低及不能定点整合的问题 ,所以近几年来转基因动物技术已出现了胚胎干细胞法 ,精子载体法 ,体细胞核移植法和人工酵母染色体法等一系列新方法。随着这些技术的不断发展 ,转基因动物技术应用正以其突出的优越性指导着多个领域的工作。目前 ,它的应用已渗透到基础理论、疾病动物模型、人异种器官移植、制药、畜牧兽医等领域。转基因动物应用正走向产业化的道路 ,具有十分广阔的前景。但作为一个新兴的技术 ,转基因动物研究还面临着一些急需解决的问题  相似文献   

15.
Continual advances in the ability to produce transgenic animals make it likely that such animals will become important components of animal agriculture. The full benefit of the technology, and justification of its initial cost outlay, will be dependent on the establishment within these animals of new traits not easily achievable by other means. Potential applications include enhanced nutrient digestibility with reduced fecal losses, significantly altered milk composition with superior nutritional properties, and enhanced disease resistance. Our goal is to enhance mastitis resistance of dairy cows by enabling the cells of the mammary gland to secrete additional antibacterial proteins. Proof of concept has been obtained through experimentation with a transgenic mouse model. Three lines of mice were developed that produce varying levels of lysostaphin in their milk. This protein has potent anti-staphylococcal activity and its secretion into milk confers substantial resistance to infection caused by intramammary challenge with Staphylococcus aureus, a major mastitis pathogen. Additional antibacterial proteins are being sought that will complement lysostaphin. A potential benefit of transgenic application of antibacterial proteins is the concomitant sparing in the agricultural use of antibiotics currently used as human therapeutics. Antibacterial proteins, such as lysostaphin, are not typically used as injectable or oral therapeutics because of immune-mediated or digestive destruction of their activity. In contrast, the immune system of transgenic animals will not consider the transgenic protein as being foreign. In addition we are exploring the potential of involution or mastitis responsive promoter elements for use in subsequent transgenic experiments designed to restrict lysostaphin production to these important time points. It is anticipated that genomics will play a role in unveiling candidate genes whose promoter elements will enable desired temporal expression patterns. The transgenic approach to insertion of new genetic material into agriculturally important animals is feasible but requires extensive prior evaluation of the transgene and transgene product in model systems.  相似文献   

16.
精子介导外源DNA转移的研究进展   总被引:3,自引:0,他引:3  
精子因在受精过程中的独特作用,而被认为是转移外源DNA的理想载体。本文对精子作载体进行转基因动物制作的方法、外源DNA与精子作用的分子机制、导入动物个体或胚胎的外源DNA的存在形式、影响精子与外源DNA结合的因素进行了论述,并对精子作为载体的研究方向和发展前景给予了预测。  相似文献   

17.
吴关庭  陈锦清 《草业科学》2006,23(12):51-55
高羊茅Festuca arundinacea是一种在世界温带地区广泛种植的很重要的多年生冷季型牧草和草坪草,长期以来其品种改良主要依靠常规育种方法。植物基因工程技术的发展为高羊茅新品种选育提供了一种很有潜力的手段,目前国內外的许多公司和实验室都在利用转基因技术改良谊草种的耐逆性、病虫害和除草剂抗性以及品质等性状。本文从受体材料、转化方法、目标基因、影响因素、转基因遗传等多个方面综述了迄今为止高羊茅遗传转化研究所取得的进展。  相似文献   

18.
The design of transgenes has always been limited by the extent of available information on the endogenous locus whose expression pattern had to be replicated. Those genes whose expression domain had not been entirely documented resulted, usually, in transgenes with an unpredictable expression patterns and suboptimal performance in transgenic animals. The use of genomic comparative approaches, highlighting evolutionary conserved homologous DNA sequences, helps to identify crucial regulatory elements that are associated to a given expression domain. The inclusion of these conserved regulatory sequences in transgenic constructs would normally result in optimal expression levels of transgenes in recipient animals. The use of artificial chromosome-type transgenes usually ensures the inclusion of these preserved regulatory elements that are required for the faithful expression of the gene. These constructs could also contain insulators, a subset of regulatory sequences whose application is being addressed in transgenesis. Therefore, the generation of transgenic animals with genomic-type constructs is the recommended approach to achieve optimal transgene expression, according to the expected pattern of the corresponding endogenous locus.  相似文献   

19.
Contents Transgenic animals are more widely used for various purposes. Applications of animal transgenesis may be divided into three major categories: (i) to obtain information on gene function and regulation as well as on human diseases, (ii) to obtain high value products (recombinant pharmaceutical proteins and xeno-organs for humans) to be used for human therapy, and (iii) to improve animal products for human consumption. All these applications are directly or not related to human health. Animal transgenesis started in 1980. Important improvement of the methods has been made and are still being achieved to reduce cost as well as killing of animals and to improve the relevance of the models. This includes gene transfer and design of reliable vectors for transgene expression. This review describes the state of the art of animal transgenesis from a technical point of view. It also reports some of the applications in the medical field based on the use of transgenic animal models. The advance in the generation of pigs to be used as the source of organs for patients and in the preparation of pharmaceutical proteins from milk and other possible biological fluids from transgenic animals is described. The projects in course aiming at improving animal production by transgenesis are also depicted. Some the specific biosafety and bioethical problems raised by the different applications of transgenesis, including consumption of transgenic animal products are discussed.  相似文献   

20.
Background: Male germline stem cells(MGSCs) are a subpopulation of germ cells in the testis tissue. MGSCs are capable of differentiation into spermatozoa and thus are perfect targets for genomic manipulation to generate transgenic animals.Method: The present study was to optimize a protocol of production of transgenic mice through transduction of MGSCs in vivo using lentiviral-based vectors. The recombinant lentiviral vectors with either EF-1 or CMV promoter to drive the expression of enhanced green fluorescent protein(e GFP) transgene were injected into seminiferous tubules or inter-tubular space of 7-day-old and 28-day-old mouse testes. At 5 or 6 wk post-surgery, these pre-founders were mated with wild-type C57BL/6J female mice(1.5 to 2.0-month-old).Results: Sixty-seven percent of F1 generation and 55.56 % of F2 offspring were positive for eG FP transgene under the control of EF-1 promoter via PCR analysis. The transgenic pups were generated in an injection site-and age-independent manner. The expression of transgene was displayed in the progeny derived from lentiviral vector containing CMV promoter to drive transgene, but it was silenced or undetectable in the offspring derived from lentiviral vector with transgene under EF-1 promoter. The methylation level of g DNA in the promoter region of transgene was much higher in the samples derived lentiviral vectors with EF-1 promoter than that with CMV promoter,suggesting e GFP transgene was suppressed by DNA methylation in vivo.Conclusion: This research reported here an effective strategy for generation of transgenic mice through transduction of MGSCs in vivo using lentivirus vectors with specific promoters, and the transgenic offspring were obtained in an injection site-and age-independent manner. This protocol could be applied to other animal species, leading to advancement of animal transgenesis in agricultural and biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号