首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The effects of habitat fragmentation on species richness and composition have been extensively studied. However, little is known about how fragmentation affects functional diversity patterns. Fragmentation can indeed affect functional diversity directly (e.g. by promoting traits associated to long-distance dispersal when fragment isolation increases) or indirectly (e.g. by decreasing species richness, hence trait diversity, when fragment area decreases). Here, we used structural equation modeling to determine whether factors associated to forest fragmentation, namely area, habitat heterogeneity, spatial isolation and age have a direct effect on forest herb functional diversity. Using occurrence data from 243 forest fragments located in northern France and six plant life-history traits, we estimated species richness and calculated functional diversity in each of these 243 forest fragments. We found that species richness was the primary driver of functional diversity in these fragments, with a strong positive and direct relationship between species richness and functional diversity. Interestingly, both fragment isolation and age had a direct negative effect on functional diversity independent of their effects on species richness. Isolation selected life-history traits associated with long-distance dispersal, while age selected for life-history traits typical of forest habitat specialists. Isolated and/or older forest fragments are thus at greater risk of local species and functional extinctions, and hence making these forest fragments particularly vulnerable to future global changes.  相似文献   

2.
3.
We studied the effects of habitat fragmentation, measured as forest stand size and isolation, on the distribution of Eurasian red squirrels (Sciurus vulgaris). Squirrel density was surveyed during four years in 46 forest stands (0.1–500 ha) in a forest landscape in south-central Sweden. The only factor that significantly influenced a density index was the proportion of spruce within a habitat fragment. Neither fragment size nor degree of isolation were significant. Furthermore, none of the interactions with year were significant, suggesting the same pattern in all four years. Thus, the effect of habitat fragmentation in this study seems to be only pure habitat loss, i.e. halving the proportion of preferred habitat in the landscape should result in a halving of the red squirrel population. Therefore, the landscape can be viewed as functionally continuous for the squirrels, although the preferred habitat was divided into fragments. The most likely explanation for the difference between this study and other studies on squirrels that found effects due to habitat fragmentation is a combination of shorter distances and less hostile surroundings in our study area. To identify landscape effects requires multiple studies because single studies usually consider only one landscape.  相似文献   

4.
Remotely sensed data and a Geographic Information System were used to compare the effects of clearcutting and road-building on the landscape pattern of the Bighorn National Forest, in north-central Wyoming. Landscape patterns were quantified for each of 12 watersheds on a series of four maps that differed only in the degree of clearcutting and road density. We analyzed several landscape pattern metrics for the landscape as a whole and for the lodgepole pine and spruce/fir cover classes across these maps, and determined the relative effects of clearcutting and road building on the pattern of each watershed. At both the landscape- and cover class-scales, clearcutting and road building resulted in increased fragmentation as represented by a distinct suite of landscape structural changes. Patch core area and mean patch size decreased, and edge density and patch density increased as a result of clearcuts and roads. Clearcuts and roads simplified patch shapes at the landscape scale, but increased the complexity of lodgepole pine patches. Roads appeared to be a more significant agent of change than clearcuts, and roads which were more evenly distributed across a watershed had a greater effect on landscape pattern than did those which were densely clustered. Examining individual watersheds allows for the comparison of fragmentation among watersheds, as well as across the landscape as a whole. Similar studies of landscape structure in other National Forests and on other public lands may help to identify and prevent further fragmentation of these areas.  相似文献   

5.
Distribution of woodland amphibians along a forest fragmentation gradient   总被引:16,自引:1,他引:16  
Gibbs  James P. 《Landscape Ecology》1998,13(4):263-268
Understanding how changes in land-use affect the distribution and abundance of organisms is an increasingly important question in landscape ecology. Amphibians may be especially prone to local extinction resulting from human-caused transformation and fragmentation of their habitats owing to the spatially and temporally dynamic nature of their populations. In this study, distributions of five species of woodland amphibians with differing life histories were surveyed along a 10 km, spatially continuous gradient of forest fragmentation in southern Connecticut, U.S.A. Redback salamanders (Plethodon cinereus) and northern spring peepers (Pseudacris c. crucifer) occupied available habitat along the gradient's length. Wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum) were absent from portions of the gradient where forest cover was reduced to below about 30%. Red-spotted newts (Notophthalmus v. viridescens) did not persist below a forest cover threshold of about 50%. Correlations between species' biological traits and their fragmentation tolerance imply that low density, population variability, and high mobility coupled with restricted habitat needs predispose woodland amphibians to local extinction caused by habitat fragmentation. These patterns are in contrast to the widely held notion that populations of the best dispersers are those most tolerant of habitat fragmentation.  相似文献   

6.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

7.
8.
Landscape Ecology - Understanding how landscape fragmentation affects functional diversity, defined as the distribution of functional traits in an assemblage, is critical for managing landscapes...  相似文献   

9.
Six species of resident birds were censused in patches of deciduous forest within a coniferous forest landscape in south central Sweden. Here, the forests have been subjected to active forestry for a long time, but with recently increased intensity. Although the forest cover is more or less continuous in this landscape, mature deciduous forest is now a rare element compared with the untouched forest.All censused patches were similar with regards to size, proportion and amount of deciduous trees, but were either isolated in the coniferous forest (isolated patches) or near to other deciduous patches (aggregated patches). We concentrated on six species of resident birds, with moderate area requirements, that are tied to deciduous forest and whose ecology is well-known. The Nuthatch and the Marsh tit, which both show strict year-round territoriality and have a restricted dispersal phase, were significantly more likely to be found in aggregated than in isolated patches. No effect was found for the Great tit and the Blue tit, which are less territorial outside the breeding season and have a longer dispersal phase. Moreover, the Great tit is less specialized on deciduous forest than the other species. Also, the Long-tailed tit was negatively affected by isolation, which may be due to restricted dispersal and to larger area requirements of this flock-territorial species. The Hazel grouse, finally, was not affected, but this larger bird probably uses the forest in a different way from the smaller species.Our study clearly shows that fragmentation of one type of forest (deciduous) within another can have serious detrimental effects on forest-living species and raises important issues for forest management practices and conservation within a forest landscape.  相似文献   

10.
Wickham  J.  Riitters  K. H. 《Landscape Ecology》2019,34(9):2169-2182
Context

Remote sensing has been a foundation of landscape ecology. The spatial resolution (pixel size) of remotely sensed land cover products has improved since the introduction of landscape ecology in the United States. Because patterns depend on spatial resolution, emerging improvements in the spatial resolution of land cover may lead to new insights about the scaling of landscape patterns.

Objective

We compared forest fragmentation measures derived from very high resolution (1 m2) data with the same measures derived from the commonly used (30 m?×??30 m; 900 m2) Landsat-based data.

Methods

We applied area-density scaling to binary (forest; non-forest) maps for both sources to derive source-specific estimates of dominant (density ≥?60%), interior (≥?90%), and intact (100%) forest.

Results

Switching from low- to high-resolution data produced statistical and geographic shifts in forest spatial patterns. Forest and non-forest features that were “invisible” at low resolution but identifiable at high resolution resulted in higher estimates of dominant and interior forest but lower estimates of intact forest from the high-resolution source. Overall, the high-resolution data detected more forest that was more contagiously distributed even at larger spatial scales.

Conclusion

We anticipate that improvements in the spatial resolution of remotely sensed land cover products will advance landscape ecology through re-interpretations of patterns and scaling, by fostering new landscape pattern measurements, and by testing new spatial pattern-ecological process hypotheses.

  相似文献   

11.
Hard (high-contrast with pastures) and soft (low-contrast with old-fields) forest edges created by slash-and-burn agriculture have become common landscape features in regions dominated by neotropical montane forest. However, little is know about the impacts of such edge types on forest regeneration dynamics. The consequences of varying forest edge permeability for oak acorn dispersal were investigated in a forest mosaic in the Highlands of Chiapas, Mexico. Rates of acorn production and removal, as well as the abundance and composition of small mammal seed consumers, were monitored along these different edge types (hard vs. soft) at specific distances from forest edges into forest patches and adjacent grasslands during two consecutive years. Results show that acorn removal declined significantly only in grasslands of sites characterised by hard edges (Logistic regression, P < 0.05). Movements of metal-tagged acorns support the hypothesis that soft edges are more permeable to small mammals, with rodents moving acorns up to 15 m into grasslands of sites with soft edges. In sites with hard edges, higher rates of acorn dispersal were recorded from the forest edge towards the forest interior. Peromyscus spp. were the main acorn predators and/or dispersers of acorns present in our study sites. Rates of acorn removal during a non-masting year were greater than the subsequent mast-seeding year (85% removal within 138 days vs. 75% within 213 days), demonstrating that mast seeding may allow some seeds to escape predation. The implications of these results for oak dispersal and regeneration along edges in fragmented tropical forest landscapes are discussed.  相似文献   

12.

Context

Patterns of forest diversity are less well known in the boreal forest of interior Alaska than in most ecosystems of North America. Proactive forest planning requires spatially accurate information about forest diversity. Modeling is a cost-efficient way of predicting key forest diversity measures as a function of human and environmental factors.

Objectives

Investigate and predict the patterns and processes in tree species and tree size-class diversity within the boreal forest of Alaska for a first mapped quantitative baseline.

Methods

For the boreal forest of Alaska, USA, we employed Random Forest Analysis (machine learning) and the Boruta algorithm in R to predict tree species and tree size-class diversity for the entire region using a combination of forest inventory data and a suite of 30 predictors from public open-access data archives that included climatic, distance, and topographic variables. We developed prediction maps in a GIS for the current levels (Year 2012) of tree size-class and species diversity.

Results

The method employed here yielded good accuracy for the huge Alaskan landscape despite the exclusion of spectral reflectance data. It’s the first quantified GIS prediction baseline. The results indicate that the geographic pattern of tree species diversity differs from the pattern of tree size-class diversity across this forest type.

Conclusions

The results suggest that human factors combined with topographical factors had a large impact on predicting the patterns of diversity in the boreal forest of interior Alaska.
  相似文献   

13.
Summary The influence of forest fragmentation was assessed on the abundance of six forest-breeding bird species. The study area (2327 sq Km) was located in south-west France. The forest cover, extracted from a Landsat MSS scene, was first reduced to a grid of 5865 quadrats, each 650 by 650 m. Two values were attributed with each quadrat: Quadrat Forest Cover (QFC), expressed in percent; and a local measure of forest fragmentation - the Neighbouring Forest Cover (NFC) - expressed on a 0–1000 scale. The distribution of six forest-breeding species was sampled on 556 quadrats.For each species, the local abundance appears to be more correlated with the fragmentation-oriented NFC value than with the local QFC value. For three species out of six (song thrush, robin, chaffinch) an incidence model, based on the Logistic regression, was built. A correct fit was obtained.An incidence map of these species was then built up over the whole study area. Their regional status was then estimated, for a sampling cost of less than 10% of censusing all the area.  相似文献   

14.
15.

Context

In tropical landscapes, dominant land-use changes involve conversion of intact forest to an agricultural matrix with embedded fragments of remnant forest. However, most research to date has focused on how these land-use changes affect species within the fragmented ecosystem, rather than the flux of energy and nutrients within these different landscape elements.

Objectives

We examined how forest fragmentation and conversion to orange fields impact the potential for litter decomposition in a Costa Rican landscape, in particular via effects on macroinvertebrates (MIs) and microclimate.

Methods

We measured mass losses of a standard leaf litter in four habitats: orange fields, small forest fragments, large forest fragments and intact forest. Litter bags were constructed of mesh that either excluded or allowed MIs. Decomposition rates were measured in wet and dry seasons, and at different distances from the forest edge.

Results

Forest fragmentation and forest conversion had divergent effects on decomposition rates. Decomposition rates were 7 % slower in forest fragments during the dry season than in intact forest, and this result was mediated by forest fragmentation effects on MIs. Decomposition rates were 9 % higher in orange fields during the wet season, relative to intact forest, and this pattern was explained by effects of the litter microenvironment on leaching rates or smaller invertebrates. Fragment area and distance from forest edge had minor or undetectable effects on decomposition in fragments.

Conclusions

We conclude that land-use changes affect decomposition processes in both forest and agroecosystems, and these effects can vary in mechanism and direction across disturbed landscapes.
  相似文献   

16.
Recent studies have shown that barrier effects exist even in relatively vagile species such as forest songbirds. The objectives of this study were to determine whether a 560 × 100 m riparian buffer strip of mature forest was used as a movement corridor by forest songbirds and, if so, to what extent corridor effects persisted as woody vegetation regenerated in the adjacent clearcut. Over a 4-yr period, juvenile movement rates decreased in the riparian buffer strip and increased in the regenerating clearcut. Adult movement rates increased in the riparian buffer strip in the first year after logging, then gradually decreased, while still increasing in the regenerating clearcut. However, both juvenile and adult movement rates were higher in the buffer strip than in an undisturbed control site. Results suggest that most adults we captured held territories in the vicinity of the net lanes,and that most of the juveniles captured were dispersing away from their natal territory. Four years after harvest, juvenile movement rates were higher in the regenerating clearcut than in the riparian buffer strip, but several species had not yet been captured or detected in the regeneration. Our results suggest that the use of the riparian buffer strip as a movement corridor decreased with forest regeneration for both adults and juveniles. However, the buffer strip still acted as a movement corridor for the following species: Philadelphia and Red-eyed Vireos, Red-breasted Nuthatch, and Ovenbird. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Habitat fragmentation is considered one of the major conservation issues of recent decades. We tested predictions of landscape patterns in a 352,253-ha managed forest area in southeast British Columbia. We did this by focussing on forest fragmentation concerns among old-growth, harvest, and wildfire patches in 44 delineated landscapes using patch indices as measures of landscape pattern. We found no significant association between amount of harvesting and 15 old-growth patch indices. Comparisons among patch types revealed that amounts and spatial patterns of harvest patches differed little from amounts and spatial patterns of old-growth patches in control landscapes. Variability indices revealed similar variability between harvest patches and old-growth patches, and more variability between harvest patches and wildfire patches. Little of the evidence gathered in this study supported predictions of fragmentation of old-growth spatial patterns, or predicted differences between harvest spatial patterns and more naturally occurring spatial patterns. We suggest these results could be due to the relatively small amounts of harvesting and old-growth forest in these landscapes, and therefore habitat amount may be a more important factor than spatial configuration of patches in these landscapes.  相似文献   

18.
Cattle move to access patches that vary in forage quantity and quality. Fragmentation can prevent animals from reaching patches. I used an integrative ecosystem model applied to three African landscapes to explore the sensitivity of cattle populations to fragmentation (here, changes in populations as parcel areas decreased) under different precipitation patterns. I hypothesized that low and high precipitation would yield populations relatively insensitive to fragmentation, intermediate precipitation would yield more sensitive populations, and more variable inter-annual precipitation would reduce sensitivity to fragmentation. Precipitation data were altered to yield averages of 100–1,000 mm year−1 and inter-annual coefficients of variation of 0–60%. A 1,000 km2 landscape in each area was divided into progressively smaller parcels and simulations conducted for each parcel. Rainfall at 100 mm year−1 supported low populations that were insensitive to fragmentation. Populations peaked at rainfall levels similar to those observed, and declined under higher precipitation, due in-part to shrub expansion. Fragmenting landscapes caused up to a 62% decline in cattle. High inter-annual variation in precipitation reduced sensitivity to fragmentation when precipitation was above that observed. The pattern was opposite when precipitation was below what was observed. Cattle on the landscape with fine-scale heterogeneity were relatively insensitive to fragmentation, and those on the heterogeneous but coarse-grained landscape were extremely sensitive. Fragmentation in landscapes where populations are sensitive will require more intensive inputs to offset losses, and changes in the frequency of extreme weather associated with climate change will alter the sensitivity of some populations to fragmentation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号