首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Linear transportation infrastructures traverse and separate wildlife populations, potentially leading to their short- and long-term decline at local and regional scales. To attenuate such effects, we need wildlife crossings suitable for a wide range of species.

Objectives

We propose a method for identifying the best locations for wildlife crossings along linear infrastructures so as to improve the connectivity of species with varying degrees of mobility and living in different habitats. We evaluate highway impacts on mammal species.

Methods

The study area is the Grésivaudan Valley, France. We used allometric relationships to create eight virtual species and model their connectivity networks, developing a nested method defining populations by daily travel distances and connecting them by dispersal. We tested the gain in connectivity for each species produced by 100 and 600 crossing locations respectively in crossable, i.e. with crossing infrastructures, and uncrossable highway scenarios. We identified the crossings that optimize the connectivity of the maximum number of species combining the results in multivariate analyses.

Results

Highly mobile species needing a large habitat area were the most sensitive to highways. The importance of locomotive performance in structuring the graphs decreased with highway impermeability. Depending on the species, the best locations improved connectivity by 0–10 and 2–75 % respectively in the crossable and uncrossable scenarios. Compromise locations were found for seven of the eight species in both scenarios.

Conclusions

This method could guide planners in identifying crossing locations to increase the connectivity of different species at regional scales over the long term.
  相似文献   

2.

Context

East African ecosystems are characterized by the migrations of large herbivores that are highly vulnerable to the recent development of anthropogenic land use change.

Objectives

We analyzed land cover changes in the Kenyan-Tanzanian borderlands of the greater Amboseli ecosystem to evaluate landscape connectivity using African elephants as an indicator species.

Methods

We used multi-temporal Landsat imagery and a post classification approach to monitor land cover changes over a 43-year period. GIS based methods were accompanied by a literature review for spatial data on land cover changes and elephant migrations.

Results

Land cover changed considerably between 1975 and 2017. Wood- and bushlands declined by 16.3% while open grasslands increased throughout the study region (+?10.3%). Agricultural expansion was observed (+?12.2%) occupying important wildlife habitats and narrowing migration corridors. This development has led to the isolation of Nairobi National Park which was previously part of a large contiguous ecosystem. Eight migration corridors were identified of which only one is formally protected. Two others are almost completely blocked by agriculture and three are expected to become endangered under continuing land use changes.

Conclusions

Landscape connectivity is still viable for this ecosystem (except for Nairobi National Park). However, the current situation is very fragile as anthropogenic land use changes are threatening most of the identified large mammal migration corridors. Sustainable land use planning with regard to important wildlife habitats and connecting corridors is a crucial task for further conservation work to safeguard a viable future for wildlife populations in the Kenyan-Tanzanian borderlands.
  相似文献   

3.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

4.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

5.

Context

Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest products at regional, landscape and global scales.

Objectives

LINKAGES 2.2 was revised to create LINKAGES 3.0 and used it to evaluate tree species growth potential and total biomass production under alternative climate scenarios. This information is needed to understand species potential under future climate and to parameterize forest landscape models (FLMs) used to evaluate forest succession under climate change.

Methods

We simulated total tree biomass and responses of individual tree species in each of the 74 ecological subsections across the central hardwood region of the United States under current climate and projected climate at the end of the century from two general circulation models and two representative greenhouse gas concentration pathways.

Results

Forest composition and abundance varied by ecological subsection with more dramatic changes occurring with greater changes in temperature and precipitation and on soils with lower water holding capacity. Biomass production across the region followed patterns of soil quality.

Conclusions

Linkages 3.0 predicted realistic responses to soil and climate gradients and its application was a useful approach for considering growth potential and maximum growing space under future climates. We suggest Linkages 3.0 can also can used to inform parameter estimates in FLMs such as species establishment and maximum growing space.
  相似文献   

6.

Context

Urban environments create a wide range of habitats that harbour a great diversity of plant species, many of which are of alien origin. For future urban planning and management of the green areas within the city, understanding of the spatial distribution of invasive alien species is of great importance.

Objectives

Our main aim was to assess how availability of different ecosystem types within a city area, as well as several parameters describing urban structure interact in determining the cover and identity of invasive alien species.

Methods

We studied the distribution of chosen invasive plant species in a mid-sized city in the Czech Republic, central Europe, on a gradient of equal sized cells from the city centre to its outskirts.

Results

A great amount of variation was explained by spatial predictors but not shared with any measured variables. The species cover of invasive species decreased with increasing proportion of urban greenery and distance from the city centre, but increased with habitat richness; road margins, ruderal sites, and railway sites were richest in invasive species. In contrast, the total number of invasive species in cells significantly decreased with increasing distance from the city centre, but increased with habitat richness.

Conclusions

Our results suggest that different invasive species prefer habitats in the vicinity of the city centre and at its periphery and the spatial structure and habitat quality of the urban landscape needs to be taken into account, in efforts to manage alien plant species invasions in urban environments.
  相似文献   

7.

Context

Land-cover changes (LCCs) could impact wildlife populations through gains or losses of natural habitats and changes in the landscape mosaic. To assess such impacts, we need to focus on landscape connectivity from a diachronic perspective.

Objectives

We propose a method for assessing the impact of LCCs on landscape connectivity through a multi-species approach based on graph theory. To do this, we combine two approaches devised to spatialize the variation of multi-species connectivity and to quantify the importance of types of LCCs for single-species connectivity by highlighting the possible contradictory effects.

Methods

We begin with a list of landscape species and create virtual species with similar ecological requirements. We model the ecological network of these virtual species at two dates and compute the variation of a local and global connectivity metric to assess the impacts of the LCCs on their dispersal capacities.

Results

The spatial variation of multi-species connectivity showed that local impacts range from ?6.4% to +3.2%. The assessment of the impacts of types of LCCs showed a variation in global connectivity ranging from ?45.1% for open-area reptiles to +170.2% for natural open-area birds with low-dispersion capacities.

Conclusions

This generic approach can be reproduced in a large variety of spatial contexts by adapting the selection of the initial species. The proposed method could inform and guide conservation actions and landscape management strategies so as to enhance or maintain connectivity for species at a landscape scale.
  相似文献   

8.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

9.

Context

Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.

Objectives

We used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.

Methods

We assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.

Results

Interacting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.

Conclusions

Understanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
  相似文献   

10.

Context

Connectivity is fundamental to understanding how landscape form influences ecological function. However, uncertainties persist due to the difficulty and expense of gathering empirical data to drive or to validate connectivity models, especially in urban areas, where relationships are multifaceted and the habitat matrix cannot be considered to be binary.

Objectives

This research used circuit theory to model urban bird flows (i.e. ‘current’), and compared results to observed abundance. The aims were to explore the ability of this approach to predict wildlife flows and to test relationships between modelled connectivity and variation in abundance.

Methods

Circuitscape was used to model functional connectivity in Bedford, Luton/Dunstable, and Milton Keynes, UK, for great tits (Parus major) and blue tits (Cyanistes caeruleus), drawing parameters from published studies of woodland bird flows in urban environments. Model performance was then tested against observed abundance data.

Results

Modelled current showed a weak yet positive agreement with combined abundance for P. major and C. caeruleus. Weaker correlations were found for other woodland species, suggesting the approach may be expandable if re-parameterised.

Conclusions

Trees provide suitable habitat for urban woodland bird species, but their location in large, contiguous patches and corridors along barriers also facilitates connectivity networks throughout the urban matrix. Urban connectivity studies are well-served by the advantages of circuit theory approaches, and benefit from the empirical study of wildlife flows in these landscapes to parameterise this type of modelling more explicitly. Such results can prove informative and beneficial in designing urban green space and new developments.
  相似文献   

11.

Context

In a global context of erosion of biodiversity, the current environmental policy in Europe is oriented towards the creation and the preservation of ecological networks for wildlife. However, most of the management guidelines arose from a structural landscape diagnostic without truly taking into consideration species’ needs.

Objectives

We tested whether and how landscape elements influence the functional connectivity of landscapes for a forest specialist species, the European pine marten (Martes martes), in Northeastern France.

Methods

We collected pine marten scats and tissues from 13 evenly distributed study sites across the whole study area in order to test several types of barriers such as highways, waterways, and open agricultural fields. We crossed the results of several methods: spatial autocorrelation analysis, causal modelling framework, and clustering methods.

Results

The study indicates significant genetic differentiation among the sampling sites. A signal of isolation by distance was detected but disappeared after partialling out landscape or barrier resistance. The only model that was fully supported by causal modelling was the one identifying waterways as the main driver of genetic differentiation. Moreover, clustering analyses indicated the presence of genetic clusters, suggesting that pine marten spatial genetic pattern could be explained by the presence of waterways but also by their reluctance to cross open fields.

Conclusions

The current ecological network could thus be improved by increasing permeability of waterways, in particular navigation canals, and by maintaining and restoring forested corridors in agricultural plains.
  相似文献   

12.

Context

Management of wintering waterfowl in North America requires adaptability because constant landscape and environmental change challenges existing management strategies regarding waterfowl habitat use at large spatial scales. Migratory waterfowl including mallards (Anas platyrhynchos) use the lower Mississippi Alluvial Valley (MAV) for wintering habitat, making this an important area of emphasis for improving wetland conservation strategies, while enhancing the understanding of landscape-use patterns.

Objectives

We used aerial survey data collected in the Arkansas portion of the MAV (ARMAV) to explain the abundance and distribution of mallards in relation to variable landscape conditions.

Methods

We used two-stage, hierarchical spatio-temporal models with a random spatial effect to identify covariates related to changes in mallard abundance and distribution within and among years.

Results

We found distinct spatio-temporal patterns existed for mallard distributions across the ARMAV and these distributions are dependent on the surrounding landscape structure and changing environmental conditions. Models performing best indicated seasonal surface water extent, rice field, wetland and fallow (uncultivated) fields positively influenced mallard presence. Rice fields, surface water and weather were found to influence mallard abundance. Additionally, the results suggest weather and changing surface water affects mallard presence and abundance throughout the winter.

Conclusions

Using novel datasets to identify which environmental factors drive changes in regional wildlife distribution and abundance can improve management by providing managers additional information to manage land over landscapes spanning private and public lands. We suggest our analytical approach may be informative in other areas and for other wildlife species.
  相似文献   

13.

Context

Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climate-induced changes through promoting carbon sequestration, forest resilience, and facilitated change.

Objectives

We modeled direct and indirect effects of climate change on avian abundance through changes in forest landscapes and assessed impacts on bird abundances of forest management strategies designed to mitigate climate change effects.

Methods

We coupled a Bayesian hierarchical model with a spatially explicit landscape simulation model (LANDIS PRO) to predict avian relative abundance. We considered multiple climate scenarios and forest management scenarios focused on carbon sequestration, forest resilience, and facilitated change over 100 years.

Results

Management had a greater impact on avian abundance (almost 50% change under some scenarios) than climate (<3% change) and only early successional and coniferous forest showed significant change in percent cover across time. The northern bobwhite was the only species that changed in abundance due to climate-induced changes in vegetation. Northern bobwhite, prairie warbler, and blue-winged warbler generally increased in response to warming temperatures but prairie warbler exhibited a non-linear response and began to decline as summer maximum temperatures exceeded 36 °C at the end of the century.

Conclusion

Linking empirical models with process-based landscape change models can be an effective way to predict climate change and management impacts on wildlife, but time frames greater than 100 years may be required to see climate related effects. We suggest that future research carefully consider species-specific effects and interactions between management and climate.
  相似文献   

14.

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.
  相似文献   

15.

Context

The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings.

Objectives

To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes?

Methods

In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns.

Results

Woody grasslands showed time lags of 20–40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012.

Conclusions

The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.
  相似文献   

16.

Context

Objective identification of locations on transportation networks, where animal-vehicle collisions (AVC) occur more frequently than expected (hotspots), is an important step for the effective application of mitigation measures.

Objectives

We introduce the KDE+ software which is a programmed version of the KDE+ method for effective identification of traffic accident hotspots. The software can be used in order to analyze animal-vehicle collision data.

Methods

The KDE+ method is based on principles of Kernel Density Estimation (KDE). The symbol ‘+’ indicates that the method allows for the objective selection of significant clusters and for the ranking of the hotspots. It is also simultaneously applicable to an unlimited number of road segments.

Results

We applied the KDE+ method to the entire Czech road network. The hotspots were ranked according to their significance. The resulting hotspots represent a short overall road length which should require a more detailed assessment in the field. The 100 most important clusters of AVC represent, for example, only 19.7 km of the entire road network (37,469 km).

Conclusions

We present an objective method for hotspots identification which can be used for AVC data. This method is unique because it determines the significance level of hotspots in an objective way. The prioritization of hotspots allows a transportation manager to effectively allocate resources to a feasible number of identified hotspots. We describe the software, data preparation and present the KDE+ application to AVC data.
  相似文献   

17.

Context

The conservation value of residential landscapes is becoming increasingly apparent in our urbanizing world. The ecological characteristics of residential areas are largely determined by the decisions of many individual “managers.” In these complex socio-ecological systems, it is important to understand the factors that motivate human decision-making.

Objectives

Our first objective was to quantify wildlife resources and management activities in residential landscapes and compare vegetation in front and back yards. Our second objective was to test three hypotheses linked with variation in yards: socioeconomic characteristics, neighborhood design factors, and perceptions of neighborhood birds.

Methods

We conducted surveys of over 900 residents in 25 Chicago-area neighborhoods to examine the wildlife resources contained in front and back yards and the social factors associated with variation in yards. We used a multi-scalar approach to examine among-yard and among-neighborhood variation in residential landscapes.

Results

Results indicate that back yards contain more wildlife resources than front yards, including greater vegetation complexity, more plants with fruit/berries, and more plants intended to attract birds. Furthermore, different hypotheses explain variation in front and back yards. Perceptions of birds were most important in explaining variation in back yard vegetation and wildlife-friendly resources per parcel, while neighbors’ yards and socioeconomic characteristics best explained front yard vegetation.

Conclusions

This study demonstrates the importance of back yards as an unexplored and underestimated resource for biodiversity. In addition, the results provide insight into the complex factors linked with yard decisions, notably that residents’ connections with neighborhood birds appear to translate to on-the-ground actions.
  相似文献   

18.

Context

Multiple ecological drivers generate spatial patterns in species’ distributions. Changes to natural disturbance regimes can place early successional habitat specialists at an increased risk of extinction by altering landscape patterns of habitat suitability.

Objectives

We developed a series of hypotheses to evaluate the effects of landscape structure, fire history, and site-level habitat quality on site occupancy by an early successional specialist, the eastern chestnut mouse (Pseudomys gracilicaudatus).

Methods

We obtained eight years of monitoring data from 26 sites in recently burned heathland in southeast Australia. We used generalised linear models to determine which explanatory variables were related to occupancy. We also explored predictability in patterns of small mammal species co-occurrence.

Results

Landscape structure (patch area, landscape heterogeneity) was strongly related to site occupancy. Site occupancy was associated with dead shrubs in the understory and rock cover on ground layer, but was not directly influenced by recent or historical fire. Contrary to contemporary ecological theory, we found no predictable species associations in our early successional community.

Conclusions

We recommend surveys take account of landscape configuration and proximity to suitable habitat for optimal results. Fire regimes expected to promote eastern chestnut mouse population growth should encourage the retention of critical habitat features rather than be based on temporal rates of successional stages. For management to adequately account for post-disturbance patterns in early successional communities, a species-by-species, multi-scaled approach to research is necessary.
  相似文献   

19.

Context

Species distributions are driven by a wide variety of abiotic and biotic factors, including nest placement for breeding individuals. As such, the spatial distribution of nests within a landscape can reflect environmental heterogeneity, habitat preferences, or even interactions with predators and other species.

Objectives

We determined the extent to which environmental heterogeneity and predation risk accounted for the observed spatial distribution of nests.

Methods

We assessed the spatial distribution of 112 nests of a migratory shorebird, the Hudsonian Godwit (Limosa haemastica), at Beluga River, Alaska, from 2009 to 2012, and explicitly tested for the relative influence of habitat characteristics and predation risk on nest locations. We also evaluated the effect of nest location, distance to conspecific nests, and proximity to roads on nest fate using 64 nests that were monitored through completion.

Results

Hudsonian Godwit nests were clustered across the landscape despite a lack of significant spatial autocorrelation (i.e., patchiness) in vegetation characteristics at either the micro- or landscape scale. Nest fate also was not predicted by either the distance to the nearest conspecific neighbor or proximity to roads. Thus, neither habitat characteristics nor predation risk explained the clustering of godwit nests.

Conclusions

These results suggest that godwits may select nest locations based more on social cues than underlying heterogeneity in vegetation or predation risk. As such, intra- and inter-specific interactions should be considered when developing management plans for species of conservation concern.
  相似文献   

20.

Context

Managers are faced with numerous methods for delineating wildlife movement corridors, and often must make decisions with limited data. Delineated corridors should be robust to different data and models.

Objectives

We present a multi-method approach for delineating and validating wildlife corridors using multiple data sources, which can be used conserve landscape connectivity. We used this approach to delineate and validate migration corridors for wildebeest (Connochaetes taurinus) in the Tarangire Ecosystem of northern Tanzania.

Methods

We used two types of locational data (distance sampling detections and GPS collar locations), and three modeling methods (negative binomial regression, logistic regression, and Maxent), to generate resource selection functions (RSFs) and define resistance surfaces. We compared two corridor detection algorithms (cost-distance and circuit theory), to delineate corridors. We validated corridors by comparing random and wildebeest locations that fell within corridors, and cross-validated by data type.

Results

Both data types produced similar RSFs. Wildebeest consistently selected migration habitat in flatter terrain farther from human settlements. Validation indicated three of the combinations of data type, modeling, and corridor detection algorithms (detection data with Maxent modeling, GPS collar data with logistic regression modeling, and GPS collar data with Maxent modeling, all using cost-distance) far outperformed the other seven. We merged the predictive corridors from these three data-method combinations to reveal habitat with highest probability of use.

Conclusions

The use of multiple methods ensures that planning is able to prioritize conservation of migration corridors based on all available information.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号