首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.  相似文献   

2.
Barley has a variety of potential food uses. However, the dark gray color of the final products negatively affects consumer acceptability. We determined the discoloration potential of barley from different classes and genotypes, and evaluated the relationship of barley composition, total polyphenol content, and polyphenol oxidase (PPO) activity with discoloration potential of barley. Barley grains were abraded, milled into flour, and analyzed for composition, total polyphenol content, and PPO activity. Total polyphenol content of abraded barley, expressed as gallic acid %, was lowest in hulled proanthocyanidin‐free barley (0.02–0.04%), followed by hulled proanthocyanidin‐containing barley (0.11–0.18%), and hull‐less barley (0.19–0.26%). PPO activity of abraded kernels ranged from 62.1 units/g in hulled proanthocyanidin‐containing Baronesse to 116.5 units/g in hulled proanthocyanidin‐free CA803803. Dough sheet brightness (L* value) was the best indicator of discoloration potential of barley. Large variation in L* value of dough sheets was observed among different classes and among genotypes within classes. Brightness of dough sheets measured at 24 hr were significantly higher in hulled (65.3–78.1) than in hull‐less (59.0–63.9) barley, and within hulled barley, higher in proanthocyanidin‐free (72.2–78.1) than in proanthocyanidin‐containing (65.3–69.6) barley. Total polyphenol content significantly correlated with the discoloration potential of barley. Protein content and ash content also had a significant negative correlation with discoloration of dough sheets. The results indicated that polyphenol compounds may play a major role in discoloration potential of barley‐based products.  相似文献   

3.
Dark discoloration negatively influences the aesthetic properties of barley‐based food products. The effects of abrasion and heat treatment of grains, exclusion of oxygen, and the use of antibrowning agents on the retardation of darkening in barley flour gel or dough were determined in four types of barley, including hulled proanthocyanidin‐containing and hulled proanthocyanidin‐free, hulless regular, and hulless waxy barley. Abrasion by >30% in hulled barley and by >15% in hulless barley significantly increased the brightness (L*) of barley flour dough by 0.1–7.1. Steam heating of abraded grains also significantly increased the L* of barley flour gels by 1.8–3.4. Ascorbic acid at 1,500 ppm was most effective for retarding discoloration of barley flour dough, followed by 50 ppm of 4‐hexylresorcinol, which is an enzyme competitive inhibitor. The discoloration of barley flour dough was also effectively reduced by storing the dough sheets at 4°C under nitrogen gas to exclude oxygen or under anaerobic conditions at 20°C. Discoloration of barley‐based food products may be effectively controlled by selecting genotypes with low discoloration development such as proanthocyanidin‐free genotypes, by lowering total polyphenol content or polyphenol oxidase (PPO) activity through abrasion, by heat treatment, by exclusion of oxygen, and by the use of enzyme inhibitors.  相似文献   

4.
Ten different barley varieties grown in one location were studied for their content of tocols, folate, plant sterols, alkylresorcinols, and phenolic acids, as well as dietary fiber components (arabinoxylan and beta-glucan). The samples included hulled and hull-less barley types and types with normal, high-amylose, and waxy starch. The aim was to study the composition of raw materials, and therefore the hulls were not removed from the hulled barleys. A large variation was observed in the contents of all phytochemicals and dietary fibers. Two varieties from the INRA Clermont Ferrand barley program in France (CFL93-149 and CFL98-398) had high content of tocopherols and alkylresorcinols, whereas the variety Dicktoo was highest in dietary fiber content and phenolics. Positive correlations were found between 1000 kernel weight, alkylresorcinols, and tocols, as well as between dietary fiber content and phenolic compounds. The results demonstrate that the levels of phytochemicals in barley can likely be affected by breeding and that the contents of single phytochemicals may easily be adjusted by a right selection of a genotype.  相似文献   

5.
Fresh and sun-dried dates of three native varieties from Oman, namely, Fard, Khasab, and Khalas, were examined for their antioxidant activity and total contents of anthocyanins, carotenoids, and phenolics, as well as free and bound phenolic acids. All results are expressed as mean value +/- standard deviation (n = 3) on a fresh weight basis. Fresh date varieties were found to be a good source of antioxidants (11687-20604 micromol of Trolox equiv/g), total contents of anthocyanins (0.24-1.52 mg of cyanidin 3-glucoside equiv/100 g), carotenoids (1.31-3.03 mg/100 g), phenolics (134-280 mg of ferulic acid equiv/100 g), free phenolic acids (2.61-12.27 mg/100 g), and bound phenolic acids (6.84-30.25 mg/100 g). A significant (p < 0.05) amount of antioxidants and carotenoids was lost after sun-drying of dates, whereas the total content of phenolics and free and bound phenolic acids increased significantly (p < 0.05). Anthocyanins were detected only in fresh dates. Date varieties had different levels and patterns of phenolic acids. Four free phenolic acids (protocatechuic acid, vanillic acid, syringic acid, and ferulic acid) and nine bound phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, and o-coumaric acid) were tentatively identified. Of the date varieties studied, Khalas, which is considered to be premium quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other varieties. These results suggest that all date varieties serve as a good source of natural antioxidants and could potentially be considered as a functional food or functional food ingredient, although some of their antioxidant constituents are lost during sun-drying.  相似文献   

6.
Seventeen varieties of cowpeas grown in Arkansas were analyzed for their phenolic constituents using high-performance liquid chromatography (HPLC). Protocatechuic acid was identified as the major phenolic acid present in esterified forms. The amount of protocatechuic acid increased from trace-3.6 to 9.3-92.7 mg/100 g of flour in the 17 varieties of cowpeas after hydrolysis. Six other phenolic acids, including, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, ferulic acid, 2,4-dimethoxybenzoic acid, and cinnamic acid, were also identified. These phenolic acids were evenly distributed mainly in free acid forms at <7 mg/100 g of flour. Total phenolic contents determined using Folin-Ciocalteu's reagent were largely different among the 17 varieties, ranging from 34.6 to 376.6 mg/100 g of flour. A comparison of the HPLC chromatograms of the 17 cowpea phenolics before and after alkali hydrolysis indicated the conversion of a pattern with evenly distributed peaks to one with a single major peak for protocatechuic acid, suggesting that the chromatograms before hydrolysis better represent the identities of the cowpea varieties.  相似文献   

7.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

8.
Phenolic acids from 30 barley varieties (combination of hulled/hulless/two-row/six-row/regular/waxy) were investigated by HPLC following four different sample treatments: (a) simple hot water extraction, (b) extraction after acid hydrolysis, (c) acid plus alpha-amylase hydrolysis, and (d) acid plus alpha-amylase plus cellulase hydrolysis treatments. The benzoic acid (p-hydroxybenzoic, vanillic, and protocatechuic acids) and cinnamic acid derivatives (coumaric, caffeic, ferulic, and chlorogenic acids) were identified, and some of the phenolic acids were quantified after each above-mentioned treatment. The data indicated that a combination of sequential acid, alpha-amylase, and cellulase hydrolysis treatments might be applicable for release of more phenolic acids from barley.  相似文献   

9.
Twelve genotypes of barley, including hulled and hulless proanthocyanidin‐containing and hulled proanthocyanidin‐free types, were grown in five environments (location‐year combination) to determine the relative contribution of genotype and environment on quality traits associated with discoloration potential of barley. Barley grains were abraded and milled into flour. Protein, ash, total polyphenol content, and polyphenol oxidase (PPO) activity were determined. Brightness (L*) of abraded kernels, cooked kernels, gels, and dough sheets were determined and used as indicators of discoloration potential. Genetic factors were more important in determining total polyphenol content, PPO activity, and brightness of dough sheets and as important as environmental factors for protein and ash content. Across environments, L* of dough sheets was consistently higher in proanthocyanidin‐free barley (73–76) than in proanthocyanidin‐containing barley (59–70). Total polyphenol content of abraded grains was highest in barley grown in a dry area at 0.18%, lower in high rainfall areas at 0.13%, and lowest in irrigated areas at 0.12%. Genotype (G) by environment (E) interactions were significant for all traits, except for brightness of cooked kernels. However, the effects of the G × E interactions were generally small compared with either the genetic or the environmental effect alone and primarily due to changes in magnitude rather than in rank. Stability analyses confirmed the nature of the G × E interactions.  相似文献   

10.
Multilocation testing remains the main tool for understanding varietal responses to the environment. Here, Latvian and Norwegian hull-less and hulled barley varieties were tested in field experiments in Latvia and Norway in order to assess the varieties adaptability across environments (sites). Two Latvian (cv Irbe and cv Kornelija) and one Norwegian hull-less barley variety (cv Pihl) were tested along with one Latvian (cv Rubiola) and one Norwegian hulled barley variety (cv Tyra) under conventional and organic management systems. The grain yield, together with physical and chemical grain parameters were compared, and variety yield and protein stability determined. Overall, grain yield of hull-less barley varieties was significantly lower than for hulled barley varieties regardless of climatic conditions and management system. However, in the organic farming systems this difference between barley types was less pronounced. The hull-less barley varieties cv Pihl and cv Irbe, along with both hulled varieties, had good yield stability across environments and were well adapted to both cropping systems. Hull-less barley varieties tended to contain more protein and β -glucans than hulled barley varieties. Despite being bred for local conditions in Norway and Latvia, our study shows that all the varieties used may be successfully transferred across countries.  相似文献   

11.
Barley and its products are good sources of antioxidants. This experiment was conducted to examine the classification and concentration of phenolic compounds, proanthocyanidins, and anthocyanins in 127 lines of colored barley. Their relationship with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was also examined. Barley was placed into seven groups using the colorimeter: hulled (black 1, black 2, black 3, and purple) and unhulled (black, blue, and purple). The contents of phenolic compounds and anthocyanins were analyzed by using HPLC. The average content of phenolic compounds in unhulled barley groups (268.6 microg/g) was higher than that in hulled (207.0 microg/g) (P > 0.05). The proanthocyanidins content was determined by modified vanillin assay. The average content of proanthocyanidins was significantly higher in purple and blue barley groups compared with black (P < 0.05). The content of anthocyanins varied from 13.0 to 1037.8 microg/g. Purple and blue barley groups contained higher average contents of anthocyanins than black (P < 0.05). The most common anthocyanin in the purple barley groups was cyanidin 3-glucoside, whereas delphinidin 3-glucoside was the most abundant anthocyanin in the blue and black groups. In colored barley, DPPH radical scavenging activity had high positive correlation to the content of phenolic compounds and proanthocyanidins.  相似文献   

12.
The contents of pnenolic acids and ferulic acid dehydrodimers were quantified by HPLC analysis after alkaline hydrolysis in kernels of 17 rye (Secale cereale L.) varieties grown in one location in Denmark during 1997 and 1998. Significant variations (P < 0.05) with regard to the concentration of the analyzed components were observed among the different rye varieties and also between different harvest years. However, the content of phenolic acids in the analyzed rye varieties was narrow compared to cereals such as wheat and barley. The concentration of ferulic acid, the most abundant phenolic acid ranged from 900 to 1170 microgram g(-1) dry matter. The content in sinapic acid ranged from 70 to 140 microgram g(-1) dry matter, p-coumaric acid ranged from 40 to 70 microgram g(-1) dry matter, and caffeic, p-hydroxybenzoic, protocatechuic, and vanillic acids were all detected in concentrations less than 20 microgram g(-1) dry matter. The most abundant ferulic acid dehydrodimer 8-O-4 -DiFA was quantified in concentrations from 130 to 200 microgram g(-1) dry matter followed by 8,5 -DiFA benzofuran form (50-100 microgram g(-1) dry matter), 5,5 -DiFA (40-70 microgram g(-1) dry matter), and 8,5 -DiFA (20-40 microgram g(-1) dry matter).  相似文献   

13.
Extracts from leaf sheaths of farmers' varieties of dye sorghum cultivated and used in Benin as a source of biocolorings were analyzed for their anthocyanidin and phenolic contents, as well as their antioxidant capacity. The aim was to identify and quantify the types of anthocyanin and phenolic acids. The total anthocyanin content of the leaf sheaths ranged from 13.7 to 35.5 mg of cyanidin 3-glucoside equivalent/g of dry matter (DM), with an average of 27.0 mg/g. The total anthocyanin content is 90 times higher than levels usually reported in fruits and vegetables. Anthocyanin consisted essentially of apigeninidin and luteolinidin, two 3-deoxyanthocyanidins with many applications in food, beverage, and pharmaceutical industries. The apigeninidin content of the leaf sheaths was 30 times higher than that in cereal bran and ranged from 14.7 to 45.8 mg/g, with an average of 31.3 mg/g. The amount of luteolinidin ranged from 0.4 to 2.4 mg/g, with a mean of 1.2 mg/g. The total phenolic content expressed as gallic acid equivalent averaged 95.5 mg/g. The free phenolic acids identified were benzoic acid, p-coumaric acid, and o-coumaric acid at amounts of 801.4, 681.6, and 67.9 μg/g, respectively. The leaf sheaths of dye sorghum have an antioxidant capacity [3.8-5.6 mmol of Trolox equivalent (TE)/g of DM] much higher than that reported for cereal bran and fruits and vegetables.  相似文献   

14.
The amounts and compositions of free, conjugated, bound, and total phenolic acids were determined in 175 samples of wheat flour grown on a single site in 2005. The highest contents of total phenolic acids were found in flours of winter wheat (1171 microg/g) with average levels of 658 microg/g total phenolics across all of the wheat genotypes. Winter wheats showed a range of >3.5-fold across the concentration range for total phenolic acids. Spelt genotypes displayed the narrowest (1.9-fold) range of total phenolic acid concentration. The concentrations of phenolic acids in the different phenolic acid fractions were in the order bound > conjugated > free, with bound phenolic acids making up around 77% of the total phenolic acid concentration and free phenolic acids constituting between 0.5 and 1%. The results indicate that there is genetic diversity in phenolic acid content and that it should be possible to selectively breed for lines with high contents of phenolic components.  相似文献   

15.
The Saskatoon berry is currently cultivated in many parts of the world for its suitability for various food products and due to its high content of nutrients and polyphenols. To determine the phytochemical profile of a Saskatoon plant, polyphenols from leaves, stems, and berries were screened from four cultivars grown in Finland using HPLC-DAD and HPLC-ESI/MS. The phenolic composition and concentrations varied among plant parts and cultivars. The main berry components were cyanidin-based anthocyanins (63% of the phenols), quercetin-derived flavonol glycosides, and hydroxycinnamic acids. The total anthocyanin content varied between 258.7 and 517.9 mg/100 fresh weight among cultivars. Protocatechuic acid was found for the first time in Saskatoon berries. The leaves consisted of quercetin- and kaempferol-derived glycosides (41% of the phenols), hydroxycinnamic acids (36%), catechins, and some neolignans. Quercetin 3-galactoside and 3-glucoside, (-)-epicatechin, and chlorogenic acid were the main phenolics in the leaves of all cultivars. The stem components were flavanone and flavonol glycosides (55% of the phenols), catechins (38%), and hydroxybenzoic acids. Concentrations of the main compound, eriodictyol 7-glucoside, varied among cultivars from 3.3 to 6.5 mg/g of stem dry weight. Very high proanthocyanidin contents were found in stems and leaves (10-14% of dry biomass), whereas berries contained a low amount of proanthocyanidins (3% of dry biomass). The findings reveal that leaves and stems of Saskatoon cultivars possess high amounts of various phenolic compounds that may offer new functional raw materials for a wide range of food and health products.  相似文献   

16.
Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn.  相似文献   

17.
不同类型栽培大麦的辐射敏感性   总被引:2,自引:0,他引:2  
用0—40krad~137Cs γ射线照射47个不同类型栽培大麦。结果表明,裸麦的辐射敏感性极显著大于皮麦。不同类型栽培大麦辐射敏感性的次序是:四棱裸大麦>六棱裸大麦>二棱裸大麦>四棱皮大麦>六棱皮大麦>二棱皮大麦。供试品种的敏感性可分为5个类型,即极迟钝型,迟钝型、中间型、敏感型和极敏感型。试验还表明,不同基因型大麦的细胞核体积与辐射敏感性无明显的相关关系,核体积的剂量效应曲线在30krad时出现一个峰值。  相似文献   

18.
A GC-MS method is reported for separation and characterization of widely different amounts of benzoic and phenolic acids as their trimethylsilyl derivatives simultaneously in cranberry. Fifteen benzoic and phenolic acids (benzoic, o-hydroxybenzoic, cinnamic, m-hydroxybenzoic, p-hydroxybenzoic, p-hydroxyphenyl acetic, phthalic, 2,3-dihydroxybenzoic, vanillic, o-hydroxycinnamic, 2,4-dihydroxybenzoic, p-coumaric, ferulic, caffeic, and sinapic acid) were identified in cranberry fruit in their free and bound forms on the basis of GC retention times and simultaneously recorded mass spectra. Except for benzoic, p-coumaric, caffeic, ferulic, and sinapic acids, 10 other phenolic acids identified have not been reported in cranberry before. The quantitation of the identified components was based on total ion current (TIC). The experimental results indicated cranberry fruit contains a high content of benzoic and phenolic acids (5.7 g/kg fresh weight) with benzoic acid being the most abundant (4.7 g/kg fresh weight). The next most abundant are p-coumaric (0.25 g/kg fresh weight) and sinapic (0.21 g/kg fresh weight) acid. Benzoic and phenolic acids occur mainly in bound forms and only about 10% occurs as free acid.  相似文献   

19.
In nine Bolivian purple corn ( Zea mays L.) varieties the content of phenolic compounds as well as the anthocyanin composition has been determined. The phenotypes under investigation included four red and five blue varieties (Kulli, Ayzuma, Paru, Tuimuru, Oke, Huaca Songo, Colorado, Huillcaparu, and Checchi). In purple corn, phenolic compounds were highly concentrated in cell walls. Thus, simultaneous determination of soluble and bound-form phenolics is essential for analysis, extraction, and quantification. The present study reports the determination of soluble and insoluble-bound fraction of phenolic compounds by HPLC-DAD and HPLC-ESI-MS(n) in Bolivian purple corn varieties. Enzymatic, thermal, and alkaline hydrolyses were used to obtain the cell wall-linked phenolic compounds. Ferulic acid values ranged from 132.9 to 298.4 mg/100 g, and p-coumaric acid contents varied between 251.8 and 607.5 mg/100 g dry weight (DW), respectively, and were identified as the main nonanthocyanin phenolics. The total content of phenolic compounds ranged from 311.0 to 817.6 mg gallic acid equivalents (GAE)/100 g DW, and the percentage contribution of bound to total phenolics varied from 62.1 to 86.6%. The total monomeric anthocyanin content ranged from 1.9 to 71.7 mg cyanidin-3-glucoside equivalents/100 g DW. Anthocyanin profiles are almost the same among the different samples. Differences are observed only in the relative percentage of each anthocyanin. Cyanidin-3-glucoside and its malonated derivative were detected as major anthocyanins. Several dimalonylated monoglucosides of cyanidin, peonidin, and pelargonidin were present as minor constituents.  相似文献   

20.
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号