首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Avian pathogenic Escherichia coli strains are associated with a variety of extraintestinal poultry diseases, including airsacculitis, colisepticemia, and cellulitis. A number of E. coli serotypes are associated with these diseases, although the most prevalent serotype is O78. Fimbrial proteins expressed by these strains appear to be important virulence factors, including type 1 fimbriae, P fimbriae, and curli. We have been working to develop an effective vaccine to protect chickens against these diseases. We have previously shown that an attenuated Salmonella typhimurium strain expressing O78 lipopolysaccharide provides protection against challenge with an O78 avian pathogenic E. coli strain. In this work, we have constructed an attenuated S. typhimurium that expresses both the O78 lipopolysaccharide and E. coli-derived type 1 fimbriae. In these studies, chickens were vaccinated at day of hatch and again at 2 wk of age. Birds were challenged at 4 wk of age. We found that the vaccine candidate provided significant protection against airsacculitis as compared to untreated controls or birds vaccinated with an attenuated S. typhimurium that did not express any E. coli antigens. In a separate experiment, challenged vaccinates showed significant weight gain compared to challenged nonvaccinates. We were not able to demonstrate protection against E. coli O1 or O2 serotype challenge, nor against challenge with wild-type S. typhimurium.  相似文献   

2.
A live attenuated Mycoplasma gallisepticum vaccine, ts-11, has been used for control of M gallisepticum in several countries. The rapid serum agglutination test is usually used as an indicator of flock response to vaccination; however, in some flocks, the detected response may be weak or absent. We investigated whether the low level, or lack, of systemic antibodies in ts-11-vaccinated flocks is correlated with susceptibility to infection after challenge with a virulent M. gallisepticum strain. Birds from 2 separate ts-11-vaccinated commercial flocks with no, or weak, rapid serum agglutination responses (at 11 or 14 wk postvaccination) were randomly selected and subjected to aerosol challenge with either M gallisepticum strain Ap3AS or sterile mycoplasma broth. A group of nonvaccinated specific-pathogen-free chickens at similar age were also exposed to aerosolization with M. gallisepticum strain Ap3AS and used as positive controls. Postmortem examination of the birds, performed 2 wk after challenge, revealed no significant difference in microscopic tracheal lesions or mucosal thicknesses between the ts-11-vaccinated field birds irrespective of their aerosolization treatment. However, both microscopic tracheal lesions and tracheal mucosal thicknesses of nonvaccinated challenged birds were significantly greater than those of ts-11 vaccinates. Hence, broiler breeders vaccinated in the field showed significant protection against virulent M. gallisepticum challenge even when no serum antibody was detected by rapid serum agglutination test. These results reveal that seroconversion detected by rapid serum agglutination test after ts-11 vaccination is not a reliable predictor of protection against M. gallisepticum infection. The possible significance of local antibody response and cell-mediated immunity against M. gallisepticum infection is discussed.  相似文献   

3.
In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.  相似文献   

4.
The immunogenicity of the ts-11 vaccine strain of Mycoplasma gallisepticum was assessed following eye drop or coarse aerosol administration in chickens of various ages. Protection was evalualted following intra-abdominal (IA) or fine droplet aerosol administration of virulent M. gallisepticum, usually the Ap3AS strain and was measured mainly by the scoring of gross air sac lesions or by egg production. Vaccination of chickens with ts-11 did not elicit a substantial serum antibody response as measured by rapid serum agglutination test, or ELISA. Protection was never demonstrated when no M. gallisepticum serum antibody response was detected in a vaccinated group of chickens. Failure to protect occurred usually, although not invariably, following aerosol administration of the vaccine. Vaccination by eye drop usually, although not invariably provided protection against challenge. In one experiment, chickens vaccinated by eye drop at 8-weeks were as susceptible as non vaccinated controls when challenged by IA inoculation at 13-weeks-of-age. Yet other birds from the same vaccinated group were resistant when challenged in an identical way at 23-weeks. No measurable increase in M. gallisepticum specific serum antibody concentrations occurred in the intervening period. Equally surprising was the response of another group of birds in the same experiment that had been vaccinated with a higher dose of ts-11. An antibody response was detected in this group, but they were susceptible to challenge at 23-weeks. Interestingly, a drop in egg production commenced 4 weeks after challenge, 2 weeks later than that observed in a non vaccinated group challenged at the same time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Several structural components of the type III secretion systems (T3SS) encoded by Salmonella pathogenicity island (SPI)-1 and SPI-2 are exposed to the host's immune system prior to/during the infection/invasion process, making them potential vaccine candidates. In this study we evaluated whether chickens vaccinated with SPI-2 T3SS components could mount a significant humoral immune response (as measured by serum IgG titres) and whether these antibodies could be transferred to progeny (as measured by egg yolk IgG titres), and whether vaccinates and progeny of vaccinates could be protected against challenge with SE. The results of our studies show that vaccinated chickens do produce high levels of SPI-2 T3SS specific serum IgG that they are able to transfer to their progeny. It was demonstrated that vaccinates and progeny of vaccinates had lower overall countable recovered Salmonella enterica subspecies enterica serovar Enteritidis (SE) per bird in most situations.  相似文献   

6.
Seven groups of chickens were challenged with a field isolate of fowl pox virus at 18 weeks old. The birds in the groups that had been vaccinated 3 weeks previously with fowl pox vaccinates showed no signs of disease. Birds which had not been vaccinated against fowl pox developed upper respiratory disease after challenge, and some birds had diphtheritic tracheitis and laryngitis which appeared identical to that commonly seen under field conditions. Seven days after challenge, fowl pox virus was recovered from the tracheas of unvaccinated birds, but not from the vaccinated ones.

Intercurrent Mycoplasma gallisepticum infection appeared to extend slightly the period of respiratory disease but was not essential for development of the diphtheritic lesion.  相似文献   

7.
减毒鸡沙门氏菌97A疫苗株安全性和免疫效力试验   总被引:6,自引:2,他引:4  
本试验将减毒鸡沙门氏菌97A疫苗株分别以不同剂量经口服和肌肉注射接种10日龄AA肉鸡,结果表明,97A对10日龄雏鸡有良好安全性。将97A分别以10  相似文献   

8.
Proteins from a field strain of Salmonella gallinarum MSG1 were compared with 9R live vaccine strain for their protection against experimental fowl typhoid in chickens. Proteins from S. gallinarum gave better protection than the 9R live vaccine as measured by clearance of challenge organism from internal organs. Proteins given twice with an adjuvant at 200 micrograms/100 g body weight resulted in 95% protection, compared with 60% protection with 9R given orally. The 9R live vaccine produced more hepatic and splenic lesions and, when administered orally as a single dose, was the least protective (60%). In the group vaccinated subcutaneously with a single dose of 9R without an adjuvant, both the challenge strain and the 9R vaccine strain were isolated from the ovaries of some birds. All chickens vaccinated with 9R strain or with proteins developed antibodies detectable by microagglutination test, and in some vaccinated groups as many as 100% of the birds developed antibody levels detected by seroagglutination.  相似文献   

9.
An inactivated Salmonella hadar vaccine was administered to parent turkey stock and the progeny were subjected to challenge with S hadar. There was some evidence that eggs from vaccinated birds were more resistant to growth of the organism. When compared with similarly infected poults from unvaccinated parents, a markedly different serological picture and pattern of salmonella excretion was seen. It appeared that the passive immunity induced by the vaccine encouraged the faster establishment of other gut Enterobacteriacae, even in the presence of large numbers of S hadar.  相似文献   

10.
The duration of immunity after a single dose of a cold-adapted strain of Avian pneumovirus (APV) was studied. Turkeys were vaccinated at 1 wk of age and challenged with virulent virus 3, 7, 10, and 14 wk later. Nonvaccinated groups were also challenged at the same times. No clinical signs were observed in the vaccinated birds after vaccination or after any challenge. No viral RNA was shed by the vaccinated birds after any challenge. The nonvaccinated birds shed viral RNA after all challenges. Avian pneumovirus-specific humoral antibodies were detected in the vaccinated birds until 14 wk after vaccination. The results of this preliminary study indicate that inoculation with a single dose of a cold-adapted strain of APV at 1 wk of age provides protection until 15 wk of age.  相似文献   

11.
Chickens were immunized orally with 10(9)cfu of the temperature-sensitive (T(s)) mutant E/1/3 of Salmonella enteritidis at 1, 2, 3 and 7 days of age. The animals were challenged with wild-type strains of Salmonella of different serotypes 7 or 14 days following immunization. Chickens receiving multiple oral doses of the vaccine strain showed no signs of disease. Immunized animals shed the vaccine strain for at least 2 weeks after the last inoculation; on the other hand, colonization by the attenuated mutant of internal organs such as spleen and liver was limited. Early exposure of the immunized animals to the virulent bacteria resulted in a reduced cecal colonization by the pathogen. Visceral invasion by the wild-type strain of S. enteritidis or S. gallinarum was drastically diminished in birds challenged 14 days after immunization. Significant differences in the number of these Salmonella were found in the cecal contents, spleen and liver of immunized birds compared with the control animals. In addition, cecal colonization by the virulent strain was reduced in birds challenged with S. typhimurium. These results demonstrate that immunization of newly hatched chickens with live attenuated T(s) mutant E/1/3 of S. enteritidis is safe and reduces Salmonella shedding.  相似文献   

12.
Han MG  Kim SJ 《Avian diseases》2003,47(2):261-271
The efficacy of four different commercial live vaccines (vaccines A, B, C, and D) against the infectious laryngotracheitis virus (ILTV) was assessed in specific-pathogen-free (SPF) chickens. SPF chickens were vaccinated intraocularly at 6 wk old with ILTV live vaccines and were challenged intratracheally with the N91B01 strain of virulent Korean ILTV 2 wk after vaccination. The immunity against ILTV live vaccines was assessed by the incidence of latent infection by the challenge virus in the chickens' tracheas and trigeminal ganglia, the reisolation rate of the challenge virus, and the clinical signs in the chickens challenged with the N91B01 strain of ILTV. The latent infection in chickens was assessed by nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Our data showed that the clinical signs and challenge virus isolation were negative in all chickens receiving four difference commercial ILTV live vaccines. The viral DNA of the vaccine strain, but not that of the challenge virus, was detected in chickens vaccinated with vaccine A by nested PCR-RFLP. The viral DNAs of both the vaccine and challenge strains were detected from chickens vaccinated with vaccines B, C, and D. This study showed that only vaccine A can protect chickens from latent infection with the field virulent ILTV. We speculate that the efficacy of infectious laryngotracheitis live vaccines to protect chickens from latent infection with virulent ILTVs can be assessed by nested PCR-RFLP analysis.  相似文献   

13.
FliC, the flagellin antigen of Salmonella Enteritidis, was tested as a vaccine candidate for protective effect against a homologous challenge in chickens. After immunization with recombinant FliC (rFliC) or administration of phosphate-buffered saline (PBS) at 56 days old, the chickens were challenged with 10(9) colony-forming units of Salmonella Enteritidis at 76 days old. The vaccinated birds showed significantly decreased bacterial counts in the liver and cecal contents compared to those administered PBS at 7 days postchallenge, but the protection was partial. The replication experiment also showed a similar result. In both experiments, vaccination induced an increased level of serum anti-rFliC IgG, which was also reactive to the native flagella. The intestinal IgA level was slightly higher in the vaccinated birds than in the control. However, neither the proliferative response nor interferon-gamma secretion of splenic cells upon stimulation with rFliC was induced. Therefore, the effect of rFliC as a vaccine is limited, and further improvement is needed.  相似文献   

14.
The serological response and protective immunity elicited in the chicken by the pathogenic Ap3AS strain and the moderately pathogenic 80083 strain of Mycoplasma gallisepticum and variants of strain 80083 attenuated by repeated passage in mycoplasma broth were investigated. Strain 80083 elicited a substantial serum antibody response after administration either in drinking water or by conjunctival sac instillation to 7-week-old SPF chickens. No vaccinated chickens developed air sac lesions when challenged by intra-abdominal (IA) injection with the virulent Ap3AS strain. Chickens vaccinated with strain 80083M (50 broth passages) showed only a weak serological response but were substantially protected when challenged 4 weeks after vaccination. Chickens vaccinated with 80083H (100 broth passages) were serologically negative 4 weeks after vaccination and developed severe air sac lesions after challenge. Thirty-seven-week-old hens vaccinated 6 months previously with strain 80083 had high serum antibody levels and were completely protected against IA challenge with the homologous strain. However, 4/6 showed mild air sac lesions when challenged intra-abdominally with strain Ap3AS. Another group showed high M. gallisepticum serum antibody levels 6 months after vaccination with strain Ap3AS but 4/6 and 2/6 showed mild lesions after IA challenge with strains Ap3AS or 80083, respectively. Strains 80083 or 80083M were administered by conjunctival sac instillation to susceptible 11-week-old commercial pullets at the time of fowl pox vaccination. The concurrent use of both vaccines had no apparent adverse effect on the health of the chickens. Similar protection against IA challenge with strain Ap3AS was produced with the M. gallisepticum vaccines whether used alone or in combination with fowl pox.  相似文献   

15.
The duration of protective immunity elicited by the MS-H vaccine was evaluated by experimental challenge of chickens at 15 and 40 wk after eyedrop vaccination. Immunity induced by the parent strain of the vaccine, 86079/7NS, was also investigated for comparison. A serological response to Mycoplasma synoviae was detected in 89% to 100% of MS-H vaccinates and 86079/7NS inoculates at 15, 27, 30, 35, and 40 wk after inoculation. A significantly lower incidence of air-sac lesions and lower air-sac lesion severity were observed in both the MS-H vaccinated and the 86079/7NS inoculated groups, as compared to the unvaccinated controls, after both challenge points. Tracheal mucosal thicknesses in MS-H vaccinates was significantly lower in the upper, lower, and total trachea at 40 wk after vaccination, as compared to the controls. It was demonstrated in this experiment that protective immunity, as determined by protection against experimental challenge, was maintained to at least 40 wk after vaccination.  相似文献   

16.
Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized with 10 microg of GST-Iss, and 1/12 chickens immunized with 50 microg of GST-Iss died when challenged with the O78 strain. No other deaths occurred. Immunized chickens produced a serum and mucosal antibody response to Iss and had significantly lower lesion scores than nonimmunized chickens following challenge, regardless of the challenge strain. This study expands on our previous report of the value of Iss as an immunoprotective antigen and demonstrates that immunization with Iss can provide significant protection of chickens against challenge with three different E. coli strains.  相似文献   

17.
The aim of this study was to examine the duration of immunity of different vaccination schemes using the S. enteritidis live vaccine Gallivac Se and the S. enteritidis-S. typhimurium inactivated vaccine Gallimune Se+St. Three groups of Lohman Brown chickens were used. Group one was vaccinated three times orally with Gallivac Se at weeks one, seven and 13 of age. Group two was vaccinated twice orally with Gallivac Se in weeks one and seven and once i.m. with Gallimune Se+St in week 14 of age. A third group was not vaccinated and served as the control group. Eight randomly selected chickens from each of the three groups were challenged with a nalidixic acid resistant S. enteritidis PT4 strain in weeks 24, 51 and 71 of age and the same number of animals were challenged with a S. typhimurium DT 104 strain in weeks 26, 54 and 73 (75) of age.The chickens were euthanised seven days post challenge and the number of challenge strain organisms (log10 cfu) in the liver and on caecal mucosa was determined.The quantitative investigation of the challenge strain in the liver and caecal mucosa revealed a statistically significant (p < 0.05) lower challenge strain burden in the vaccinated groups compared with the non-vaccinated control group up to week 71 (73) of age. The protective effects were demonstrated for both challenge strains.  相似文献   

18.
The protection elicited by a temperature-sensitive (Ts) mutant of Ornithobacterium rhinotracheale (ORT) vaccine against challenge with pathogenic strain was investigated. In Experiment 1, specific serologic response to ORT was detected in 12%-19% of Ts-vaccinated birds at 3 wk postvaccination by either drinking water or oculo-nasal instillation. At 7 days postchallenge, 100% of Ts-vaccinated turkeys of all groups were able to respond with an ORT-specific antibody response, but the control group was not, suggesting the potential of Ts strain to evoke immune protection. The study also revealed a statistically significant ability of the Ts strain to protect vaccinated turkeys against gross lesions caused by the pathogenic strain of ORT in treated groups vs. control. In Experiment 2, seroconversion was detected by enzyme-linked immunosorbent assay in birds after they were given the Ts strain in drinking water in field conditions. The results of the field study showed mean scores of gross lesions of nonvaccinated/challenged groups to be up to seven times higher than those of the vaccinated/challenged group. In addition, reisolation rates and quantification of ORT colonies per gram of lung tissue were significantly lower for vaccinated/challenged than for nonvaccinated/challenged turkeys. In conclusion, results from laboratory and field experiments suggest that use of the Ts mutant strain of ORT as a live vaccine would be a suitable method to evoke protection against ORT infection in turkeys.  相似文献   

19.
The virulence of four South African field isolates of NAD-dependent Haemophilus paragallinarum and two field isolates of NAD-independent H. paragallinarum has previously been tested in unvaccinated chickens. In this study, the disease profiles caused by the NAD-dependent isolates of H. paragallinarum in vaccinated chickens were studied. It was shown that the clinical signs induced in the vaccinated chickens were substantially less severe than were those in unvaccinated chickens, as was expected. However, due to the high virulence of the serovar C-3 isolates, clinical signs in the vaccinated chickens challenged with this isolate were still detected. These were as severe as those occurring in unvaccinated chickens challenged with serovar B-1 isolates. Although the clinical signs induced in unvaccinated birds challenged with serovar A-1 were more severe than those occurring when vaccinated birds were challenged with serovar C-3, the overall disease profiles were similar. Substantial clinical signs were recorded in vaccinated birds challenged with serovar C-3. This could be interpreted as vaccination failure if the disease profile obtained in unvaccinated birds is not considered. It was found that a high level of protection was provided by this vaccine against challenge by serovar C-3. The high virulence of this serovar resulted in the development of clinical signs in vaccinated birds. These findings could possibly explain the large number of so-called vaccination failures that are reported in South Africa.  相似文献   

20.
The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号