首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以歧化松香胺席夫碱铜催化剂,H2O2(30%)氧化聚松香丙烯醇酯(PRAAE),得到聚松香丙烯醇酯氧化物。对聚合物进行了红外、紫外、软化点和热失重分析,BET法测定聚松香丙烯醇酯氧化物的微孔大部分分布在5nm以上;对聚松香丙烯醇酯氧化物相对分子质量进行了分析,其量在25266以上。结果表明所合成的聚松香丙烯醇酯氧化物为大孔聚合物。  相似文献   

2.
在密闭条件下,利用微波辐射快速有效地合成了松香季戊四醇酯.常规酯化反应需要270 min,在微波密闭条件下,不仅反应时间大幅度地缩短至40 min,而且所得产品的质量也有提高.为了研究各反应因素对产品酸值和软化点的影响,设计了正交试验L9(34),并得出了微波密闭条件下合成松香季戊四醇酯的最佳反应条件:催化剂BEP用量0.30%、季戊四醇用量16%、反应时间40 min、微波功率200 W.该条件下合成的松香季戊四醇酯加纳色号为4、酸值12.7 mg/g、软化点102℃.  相似文献   

3.
以工厂所用的普通一级松香为主原料,采用多种催化剂,研究了合成浅色145#松香季戊四醇酯的工艺条件.实验选用8种国内外适合松香树脂的催化剂,主要探讨了催化剂种类及复配条件与产品质量之间的关系.并对反应温度、反应时间和原料配比等影响因子进行了探讨.通过实验得到,合成145#松香季戊四醇酯的适宜工艺条件为反应温度(275±2)℃,反应时间6 h(可根据实际需要适当延长),适宜的反应物配比为松香、季戊四醇、催化剂A、催化剂G的质量比为10.120.0020.0005.在上述工艺条件下,得到145#松香季戊四醇酯产品,其质量指标是色泽3(加纳比色),软化点91.7℃,酸值24.8 mg/g.  相似文献   

4.
以富马酸和季戊四醇对松香进行改性,生产富马酸改性松香季戊四醇酯,研究温度、时间、原辅料配比等因素分别对富马酸改性松香和富马酸改性松香季戊四醇酯合成的影响,结果表明反应温度为195℃、反应时间4 h、富马酸加入量为松香的6%,为富马酸与松香的D-A加成反应的最佳条件;富马酸改性松香与季戊四醇酯化反应最优条件为:温度为270℃,反应时间8.5 h,季戊四醇加入的量为富马酸改性松香的14%。本研究工艺无需催化剂就能实现富马酸松香季戊四醇酯的合成,扩大稳定性试验表明反应得率91.3%,产品软化点125.5℃,酸值11.8 mg KOH/g。  相似文献   

5.
刘月蓉 《林业科学》2007,43(7):74-77
依据松香的结构及其氧化机理,考察酚类、亚磷酸酯类、硫酯类等对聚合松香的浅色反应.结果表明:十二硫醇、环氧大豆油、SWC-80可作为聚合松香酯化的浅色剂,以SWC-80为浅色剂、DynOm为催化剂,制得的浅色聚合松香甘油酯,颜色为2号(加纳),酸值12.1 mgKOH·g-1,软化点为135℃;制得的浅色聚合松香季戊四醇酯,颜色为3号(加纳),酸值22.1 mgKOH·g-1,软化点为143℃.  相似文献   

6.
松香烯丙醇酯的合成研究   总被引:8,自引:0,他引:8  
探索了一种两步合成松香烯丙醇酯的新方法,即先以烯丙醇和对甲苯磺酰氯为原料,以NaOH为催化剂,通过O-酰化反应合成中间体对甲苯磺酸烯丙醇酯,再与松香纳皂发生亲核取代反应合成目标产物松香烯丙醇酯.通过单因素试验,得出合成中间体对甲苯磺酸烯丙醇酯的最佳工艺条件为:n(烯丙醇)∶n(对甲苯磺酰氯)为3∶1,反应温度0℃,反应时间3 h,产率达89.5%;合成目标产物松香烯丙醇酯的最佳工艺条件为:n(松香钠)∶n(对甲苯磺酸烯丙醇酯)为1.3∶1,反应温度40℃,反应时间2 h,产率达75.4%.利用TLC、IR和GC-MS对目标产物进行了分析和表征.试验表明,该法具有反应时间短、反应温度低的优点,能很好地避免原料因高温而发生的副反应.  相似文献   

7.
微波辐射下松香与多元醇的酯化反应研究   总被引:13,自引:3,他引:13  
研究了微波辐射下松香与甘油、季戊四醇的酯化反应。反应以氧化锌为催化剂,在不通氮气和不加抗氧化剂的条件下,在650w功率微波辐射下常压反应30min,再在5kPa的压力下反应30min,制备的松香甘油酯酸值为8.3mgKOH/g,色泽为8,软化点82.0℃;松香季戊四醇酯的酸值为8.6mgKOH/g,色泽为7,软化点91.0℃。最佳反应物质量配比为:松香:甘油:氧化锌为20:2.4:0.068;松香:季戊四醇:氧化锌为20:3.2:0.034。  相似文献   

8.
松香乙萘酚醛树脂合成研究   总被引:2,自引:1,他引:1  
采用乙萘酚,松香,甲醛,甘油反应,合成一种新的松香乙萘醛醛树脂。该树脂色泽浅,软化点高,油溶性好,光泽度高,讨论了原料比,催化剂,温度,时间等反应条件。用IR谱对产品结构进行表征。  相似文献   

9.
以松香为原料,依次进行酰氯化和酯化反应合成松香基混合单体,并采用FT-IR、GC-MS、13C NMR对其结构进行表征;然后将该松香基混合单体、可逆加成-断裂链转移(RAFT)试剂二硫代苯甲酸异丙苯酯(CDB)和引发剂偶氮二异丁腈(AIBN)按物质的量比100∶1∶0.1进行RAFT聚合反应。为了进一步研究松香基单体的RAFT聚合过程,以高纯度的脱氢枞酸基单体进行了RAFT聚合反应。结果表明:脱氢枞酸基单体在松香基混合单体中GC含量为14.3%,在RAFT聚合中显示了很好的聚合结构可控性,聚合物的多分散系数(PDI)为1.28;而松香基混合单体基聚合物的PDI相对较高,PDI为1.85,但仍属于可控范围。所合成的松香基RAFT聚合物同时也是一种新型大分子RAFT试剂,可以作为下一步RAFT活性聚合的RAFT试剂。TGA分析表明:松香基RAFT聚合物显示了很好的热稳定性,质量损失为10%的温度和最大分解温度分别为250和350℃。  相似文献   

10.
介绍了松香、改性松香及其衍生物在胶粘剂中的应用.应用于胶粘剂的松香有脂松香、未松香和浮油松香:改性松香包括它们的氢化、脱氢、歧化,聚合以及马来酸酐反应后的产物.松香衍生物包括松香和改性松香与各种醇反应生成的松香酯,氯化松香以及与其他物质的共聚物。松香及其衍生物在热熔胶和压敏胶中应用尤其广泛.  相似文献   

11.
功能基聚氧化松香二元醇酯的制备与性能研究   总被引:1,自引:0,他引:1  
探讨了松香的氧化及氧化产物与二元醇反应合成聚酯的反应;研究了催化剂、反应温度、反应时间、投料比及不同二元醇类对聚酯制备的影响。采用紫外光谱、红外光谱等对松香氧化产物及聚酯结构进行了表征,并测定了聚酯的酸值、溶解度、热失重和软化点。实验结果表明,当反应温度为75℃,反应时间为8 h,氧化产物酸值达到318 mg.g-1;聚氧化松香乙二醇酯制备的适宜条件为:以AlCl3为催化剂,反应温度120~140℃之间,反应时间为20 h左右,投料比n松香氧化产物∶n乙二醇=1∶1.2~1∶1.5。该聚酯热失重5%时的温度为178.19℃,软化点为248℃,在甲苯、乙醇和丙酮中溶解度分别为0.0008 g.ml-1、0.0392 g.ml-1和0.0204 g.ml-1。  相似文献   

12.
氢化松香蔗糖酯的合成与表征   总被引:5,自引:0,他引:5  
以碱性皂为乳化剂和催化剂,在(125±1)℃、反应物料物质的量之比1:1,真空度0.090Mpa及无溶剂的条件下,通过氢化松香乙酯与蔗糖的酯交换反应合成了氢化松香蔗糖酯(HRSE).用TLC、IR、UV、HPLC、HPLC-MS、13CNMR等多种方法对产物进行了分析和表征,并测得产物的临界胶束浓度(CMC)为0.009mol/L,此时的表面张力为47mN/m.  相似文献   

13.
马来松香木薯淀粉酯的微波合成   总被引:3,自引:2,他引:1  
在微波辐照下,通过木薯淀粉与马来松香酰氯(MPA-C l)的O-酰化反应合成了不同取代度的马来松香木薯淀粉酯(MRCSE),利用FT-IR、NMR、X射线衍射(XRD)和元素分析对MRCSE进行了表征。探讨了反应条件对MRCSE取代度的影响,通过单因素试验得出最佳合成工艺条件为:木薯淀粉0.5 g,MPA-C l 3.4 g,吡啶体积25 mL,淀粉活化时间1.5 h,反应温度110℃,功率700 W,反应时间1.5 h,物质的量比1∶1(马来松香酰氯-葡萄糖单元中羟基数)。并测试了DS为0.170的MRCSE的特性黏度和溶解性能。结果表明,与原料木薯淀粉相比,MRCSE的特性黏度降低、溶解性能变好,尤其可溶于冷水,即MRCSE是一种新型水溶性淀粉衍生物。  相似文献   

14.
采用木薯淀粉和松香为原料,研究了酶法催化松香木薯淀粉酯的合成。通过单因素和响应面法优化了各因素对松香淀粉酯取代度影响,结果表明最佳工艺条件为:松香与淀粉的质量比为3.6∶1,反应时间4.2 h,反应温度48.5℃,固定化脂肪酶用量为15%(以淀粉质量计),此时松香淀粉酯取代度可达0.106。通过FT-IR,XRD和SEM对产物进行表征,产物在1729 cm-1产生CO的伸缩振动,说明松香与淀粉发生了酯化反应形成了松香淀粉酯,并且晶体形貌和结构发生了改变。同时对产物的性能进行了研究,结果表明,与预处理淀粉相比酯化产物的乳化能力和乳化稳定性分别增加了122.26%和134.16%、表面张力和透明度分别降低了46.9%和5.22%。  相似文献   

15.
非贵金属催化剂催化松香歧化反应研究   总被引:5,自引:1,他引:5  
采用非贵金属为催化剂活性组分,用醇盐水解法制备氧化物负载金属活性组分为纳米粒子的新型催化剂。用F/MnOx催化剂催化思茅松脂松香歧化反应,在松香:催化剂:溶剂质量比为100:2.5:1、反应温度270℃、反应时间3h、通N2条件下,得到歧化松香脱氢枞酸含量48%以上,酸值152mgKOH/g以上,软化点高于79℃,不皂化物含量低于8%,色泽号(罗维邦)低于2。  相似文献   

16.
改性松香-缩合单宁酯的制备及性质   总被引:1,自引:1,他引:0  
在微波辐照下,以吡啶作催化剂,通过缩合单宁与改性松香酰氯的O-酰化反应,以改性松香和不同级分或树种的缩合单宁为原料,合成了一系列改性松香-缩合单宁酯.利用UV、IR、TG-DTA和元素分析等方法对目标产物进行了分析和表征,并测试了它们的抗氧化性及其钠盐的表面活性.结果表明,改性松香-缩合单宁酯的油溶性普遍好于缩合单宁,在花生油中表现出良好的抗氧化性,且去氢枞酸-毛杨梅树皮缩合单宁酯的抗氧化性能最佳.改性松香-缩合单宁酯的钠盐比缩合单宁的钠盐具有更优良的表面活性,其降低表面张力能力强弱顺序为:HR-WT钠盐>HR-ET钠盐>DR-ET钠盐>DR-WT钠盐>DHA-WT钠盐≈DHA-MET钠盐>DHA-ET钠盐>ET钠盐;不同松香改性产物钠盐的表面张力和临界胶束浓度有一定差异,但差别不大,其中氢化松香改性产物钠盐的表面活性最好,歧化松香改性产物钠盐的表面活性次之,去氢枞酸改性产物钠盐的表面活性最差.改性松香-缩合单宁酯钠盐对苯的乳化力都超过了60min,具有很好的乳化能力.改性松香-缩合单宁酯钠盐起泡比顺序为:氢化松香-黑荆树树皮缩合单宁酯钠盐>歧化松香-黑荆树树皮缩合单宁酯钠盐>去氢枞酸-黑荆树树皮缩合单宁酯钠盐>去氢枞酸-毛杨梅树皮缩合单宁酯钠盐>毛杨梅树皮缩合单宁钠盐.  相似文献   

17.
以新型的脱氢枞酸(2-甲基丙烯酰氧基异丙醇基)酯(DAGMA)为单体,聚乙烯吡咯烷酮(PVP)为分散稳定剂,偶氮二异丁腈(AIBN)为引发剂,异丙醇/水为反应分散介质,采用分散聚合法制备了单分散的聚脱氢枞酸(甲基丙烯酰氧基-β-羟基丙基)酯(PDAGMA)微球。研究了分散剂用量、单体质量分数、反应温度对PDAGMA聚合物微球粒径大小及分布的影响,并用交联剂进行交联,初步探索了其吸附性能。采用FT-IR、~1H NMR、GPC、SEM和TGA对聚合物微球的结构及微球的形貌和尺寸进行表征。研究结果表明:DAGMA单体在醇/水介质中能够发生聚合反应,且GPC测得聚合物的相对分子质量约为55 000;聚合物微球粒径随着PVP用量的增大而减小,随着单体质量分数增大聚合物微球平均粒径先减小后增大,并且反应温度升高粒径增大,分散聚合得到的聚合物微球PDI最低为1.014,粒径为1.37μm;交联后松香基聚合物热稳定性提高,并且对芦丁的吸附量为12.3 mg/g。  相似文献   

18.
制备了松香聚醚酯消泡剂,测定了消泡与控泡性能。实验结果为:合成松香聚醚酯的催化剂对甲苯磺酸的用量为0.12%,反应温度100-200℃,反应时间6-7h。松香一元脂肪醇聚醚酯中,环氧丙烷-环氧乙烷(PO-EO)聚醚的相对分子质量(MW)增大有利于消泡,一元聚醚中nPO与nEO为64-78:10—12,即npo:ng比值为7.25时消泡与控泡性能最优;较大MW的二元PO-EO聚醚的二松香酯消泡与控泡性提高,但MW大于7000时分散性下降,不利于消泡。聚醚中EO的质量比影响消泡与控泡性,当EO占松香聚醚酯质量的10%时,消泡性最优。  相似文献   

19.
浅色松香酯的研究进展   总被引:9,自引:0,他引:9  
松香酯是松香的重要改性产品之一,广泛应用于各个领域,但目前松香酯颜色较深,不能满足用户的要求。因此开发研制浅色松香酯是一个重要的课题。本文从松香原料、催化剂、添加剂、酯化工艺等方面探讨了浅色松香酯的研究进展。  相似文献   

20.
采用氢氧化钠/尿素混合水溶液对木薯淀粉进行预处理活化,研究了预处理对木薯和松香酶法合成松香淀粉酯的影响。通过SEM、FT-IR和XRD等表征方法研究了预处理对木薯淀粉颗粒形貌和结晶结构的影响,结果表明,木薯淀粉经预处理后,淀粉粒仍保持一定圆形或椭圆形结构,但是其表面有破面和裂缝;预处理淀粉结晶结构遭到一定程度破坏,结晶度降低。对比分析木薯淀粉及预处理木薯淀粉的理化性质发现,预处理后的木薯淀粉在冷水中的溶解率由7.5%增加到45.7%,提高了38.2个百分点,透明度由86.6%增加到95.7%,增强了9.1个百分点,相对黏度降低。以松香为原料,固定化脂肪酶为催化剂,分别与木薯淀粉和预处理木薯淀粉进行酯化反应,考察预处理对酯化反应取代度的影响。结果表明,经预处理后的木薯淀粉与松香反应的取代度高达0.102,相比预处理前松香淀粉酯的取代度0.016明显提高。FT-IR分析表明,预处理后木薯淀粉酯化后的松香淀粉酯在1720 cm-1处产生明显的酯羰基CO伸缩振动吸收峰,其化学反应活性明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号