首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monotypic stands of crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced grass, occupy vast expanses of the sagebrush steppe. Efforts to improve habitat for sagebrush-associated wildlife by establishing a diverse community of native vegetation in crested wheatgrass stands have largely failed. Instead of concentrating on a diversity of species, we evaluated the potential to restore the foundation species, Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S. L. Welsh), to these communities. We investigated the establishment of Wyoming big sagebrush into six crested wheatgrass stands (sites) by broadcast seeding and planting seedling sagebrush across varying levels of crested wheatgrass control with glyphosate. Planted sagebrush seedlings survived at high rates (~ 70% planted sagebrush survival 3 yr postplanting), even without crested wheatgrass control. However, most attempts to establish sagebrush by broadcast seeding failed. Only at high levels of crested wheatgrass control did a few sagebrush plants establish from broadcasted seed. Sagebrush density and cover were greater with planting seedlings than broadcast seeding. Sagebrush cover, height, and canopy area were greater at higher levels of crested wheatgrass control. High levels of crested wheatgrass control also created an opportunity for exotic annuals to increase. Crested wheatgrass rapidly recovered after glyphosate control treatments, which suggests multiple treatments may be needed to effectively control crested wheatgrass. Our results suggest that planting sagebrush seedlings can structurally diversify monotypic crested wheatgrass stands to provide habitat for sagebrush-associated wildlife. Though this is not the full diversity of native functional groups representative of the sagebrush steppe, it is a substantial improvement over other efforts that have largely failed to alter these plant communities. We also hypothesize that planting sagebrush seedlings in patches or strips may provide a relatively inexpensive method to facilitate sagebrush recovery across vast landscapes where sagebrush has been lost.  相似文献   

2.
Crested wheatgrass, an introduced perennial bunchgrass, has been seeded extensively on the rangelands of western North America. There is a perception that this species is very competitive and that it forms monoculture or low diversity stands where successfully seeded. However, there is limited information on species composition in sites previously seeded to crested wheatgrass. We measured native vegetation and environmental characteristics in areas seeded with crested wheatgrass across the northwestern Great Basin. Plant community composition within these crested wheatgrass stands was variable, from seedings that were near monocultures of crested wheatgrass to those that contained more diverse assemblages of native vegetation, especially shrubs. Environmental factors explained a range of functional group variability from 0% of annual grass density to 56% of large native bunchgrass density. Soil texture appeared to be an important environmental characteristic in explaining vegetation cover and density. Native vegetation was, for all functional groups, positively correlated with soils lower in sand content. Our results suggest environmental differences explain some of the variability of native vegetation in crested wheatgrass stands, and this information will be useful in assessing the potential for native vegetation to co-occupy sites seeded with crested wheatgrass. This research also suggests that crested wheatgrass seedings do not always remain in near monoculture vegetation states as seedings substantially varied in native vegetation composition and abundance with some seeded areas having a more diverse assemblage of native vegetation. In half the sites, there were five or more perennial herbaceous species and 63% of sites contained Wyoming big sagebrush. Although not exclusively true, species most commonly encountered in crested wheatgrass seedings are those that are able to minimize competition with crested wheatgrass via temporal (i.e., Sandberg bluegrass, annual forbs, annual grasses) or spatial (i.e., shrubs) differentiation in resource use.  相似文献   

3.
Stable bunchgrass populations are essential to resilience and restoration of sagebrush steppe rangelands, yet few studies have assessed long-term variation in plant abundance from a known starting point. We capitalized on a previous paddock study by reestablishing in 2011 nine replicate blocks consisting of 29 × 29 grid of cells, each planted in 1998 with a single individual of one of eight sagebrush steppe bunchgrasses, including the widely planted exotic, crested wheatgrass (Agropyron cristatum). Plant species and numbers were determined in 2011 for each cell, which were classified as holds or cedes, with ceded cells used to determine species-specific gains. We hypothesized the competitive crested wheatgrass would proportionally occur more in gained cells compared with native grasses. While crested wheatgrass did proportionally hold and gain the greatest number of cells, the relative number of plants within holds and gains was constant across all species, with most plants (80 ? 87%) occurring outside cells originally planted with them. Crested wheatgrass had greater proportions of holds and gains where it was the only species within the cell and showed even presence across all cells planted with other grass species in 1998. Native grasses were underrepresented in 1998 crested wheatgrass cells and sometimes overrepresented in other native species cells. The ratio of total crested wheatgrass to native bunchgrass plants followed a sigmoidal step increase with increasing crested wheatgrass density. These results show population changes in sagebrush steppe bunchgrasses are determined by seed production and emergent seedling survival, both of which are stronger in the exotic bunchgrass. This study also showed that native grasses can maintain presence via seed in areas depending on crested wheatgrass density. This information could help shape management strategies capitalizing on the utility of crested wheatgrass and sustaining desirable levels of native grass productivity and diversity.  相似文献   

4.
Little is known about how cultivation legacies affect the outcome of rehabilitation seedings in the Great Basin, even though both frequently co-occur on the same lands. Similarly, there is little known about how these legacies affect native species re-establishment into these seedings. We examined these legacy effects by comparing areas historically cultivated and seeded to adjacent areas that were seeded but never cultivated, for density of seeded crested wheatgrass (Agropyron cristatum [L.] Gaertn.) and native perennial grasses, vegetation cover, and ground cover. At half of the sites, historically cultivated areas had lower crested wheatgrass density (P < 0.05), and only one site had a higher density of crested wheatgrass (P < 0.05). Likewise, the native shrub Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) had lower cover (P < 0.05) in historically cultivated areas at half the sites. Sandberg bluegrass (Poa secunda J. Presl.) density was consistently lower in historically cultivated areas relative to those seeded-only. At sites where black greasewood (Sarcobatus vermiculatus [Hook.] Torr.) and bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey) were encountered, there was either no difference or a higher density and cover within historically cultivated areas (P < 0.05). Likewise, cover of exotic forbs, especially halogeton (Halogeton glomeratus [M. Bieb.] C. A. Mey.), was either not different or higher in historically cultivated areas (P < 0.05). Bare ground was greater in historically cultivated areas at three sites (P < 0.05). These results suggest that cultivation legacies can affect seeding success and re-establishment of native vegetation, and therefore should not be overlooked when selecting research sites or planning land treatments that include seeding and or management to achieve greater native species diversity.  相似文献   

5.
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and chemically (1.1 L · ha?1 or 3.2 L · ha?1 glyphosate–Roundup Original Max) treated two crested wheatgrass sites in northern Utah followed by seeding native species in 2005 and 2006. The study was conducted at each site as a randomized block split plot design with five blocks. Following wheatgrass-reduction treatments, plots were divided into 0.2-ha subplots that were either unseeded or seeded with native plant species using a Truax Rough Rider rangeland drill. Double-pass disking in 2005 best initially controlled wheatgrass and decreased cover from 14% to 6% at Lookout Pass and from 14% to 4% at Skull Valley in 2006. However, crested wheatgrass recovered to similar cover percentages as untreated plots 2–3 yr after wheatgrass-reduction treatments. At the Skull Valley site, cheatgrass cover decreased by 14% on herbicide-treated plots compared to an increase of 33% on mechanical-treated plots. Cheatgrass cover was also similar on undisturbed and treated plots 2 yr and 3 yr after wheatgrass-reduction treatments, indicating that wheatgrass recovery minimized any increases in weed dominance as a result of disturbance. Native grasses had high emergence after seeding, but lack of survival was associated with short periods of soil moisture availability in spring 2007. Effective wheatgrass control may require secondary treatments to reduce the seed bank and open stands to dominance by seeded native species. Manipulation of crested wheatgrass stands to restore native species carries the risk of weed invasion if secondary treatments effectively control the wheatgrass and native species have limited survival due to drought.  相似文献   

6.
Interference from crested wheatgrass (Agropyron cristatum [L.] Gaertn.) seedlings is considered a major obstacle to native species establishment in rangeland ecosystems; however, estimates of interference at variable seedling densities have not been defined fully. We conducted greenhouse experiments using an addition-series design to characterize interference between crested wheatgrass and four key native species. Crested wheatgrass strongly interfered with the aboveground growth of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young), rubber rabbitbrush (Ericameria nauseosa [Pall. ex Pursh] G. L. Nesom & Baird subsp. consimilis [Greene] G. L. Nesom & Baird), and to a lesser extent with bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve). Alternatively, bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey subsp. californicus [J. G. Sm.] Barkworth) and crested wheatgrass had similar effects on each other’s growth, and interference ratios were near 1.0. Results indicate that the native grasses more readily establish in synchrony with crested wheatgrass than these native shrubs, but that once established, the native shrubs are more likely to coexist and persist with crested wheatgrass because of high niche differentiation (e.g., not limited by the same resource). Results also suggest that developing strategies to minimize interference from crested wheatgrass seedlings emerging from seed banks will enhance the establishment of native species seeded into crested wheatgrass–dominated communities.  相似文献   

7.
Past seedings of crested wheatgrass (Agropyron cristatum [L.] Gaertn. and A. desertorum [Fisch. ex Link] Schult.) have the potential to persist as stable, near-monospecific stands, thereby necessitating active intervention to initiate greater species diversity and structural complexity of vegetation. However, the success of suppression treatments and native species seedings is limited by rapid recovery of crested wheatgrass and the influx of exotic annual weeds associated with herbicidal control and mechanical soil disturbances. We designed a long-term study to evaluate the efficacy of low-disturbance herbicide and seed-reduction treatments applied together or alone and either once or twice before seeding native species. Consecutive herbicide applications reduced crested wheatgrass density for up to 6 ? 7 yr depending on study site, but seed removal did not reduce crested wheatgrass abundance; however, in some cases combining herbicide application with seed removal significantly increased densities of seeded species relative to herbicide alone, especially for the site with a more northern aspect. Although our low-disturbance treatments avoided the pitfalls of secondary exotic weed influx, we conclude that crested wheatgrass suppression must reduce established density to values much lower than 4 ? 7 plants/m2, a range that has not been obtained by ours or any previous study, in order to diminish its competitive influence on seed native species. In addition, our results indicated that site differences in environmental stress and land-use legacies exacerbate the well-recognized limitations of native species establishment and persistence in the Great Basin region.  相似文献   

8.
Within the sagebrush steppe ecosystem, sagebrush plants influence a number of ecosystem properties, including nutrient distribution, plant species diversity, soil moisture, and temperature, and provide habitat for a wide variety of wildlife species. Recent increases in frequency and size of wildfires and associated annual grass expansion within the Wyoming big sagebrush alliance have increased the need for effective sagebrush restoration tools and protocols. Our objectives were to quay the success of Wyoming big sagebrush transplants relative to transplant stock (nursery seedlings vs. wildlings) across different ecological sites and vegetation types and to test the hypothesis that reduction of herbaceous vegetation would increase survival of transplanted sagebrush. We used a randomized block (reps = 5) design at each of three sites—1) cheatgrass dominated, 2) native plant dominated, and 3) crested wheatgrass dominated—near Elko, Nevada. Treatments included plant stock (nursery stock or locally harvested wildlings) and herbicide (glyphosate) to reduce competition from herbaceous vegetation. Transplants were planted in the spring of 2009 and 2010 and monitored for survival. Data were analyzed for site and treatment effects using mixed-model ANOVA. Surviving plant density at and 2 yr postplanting was generally highest (up to 3-fold) on the native site (P < 0.05). Density of surviving transplants was almost 3-fold higher for nursery stock on most sites for the 2009 planting, but differences in survival by planting stock were minimal for the 2010 planting. Glyphosate application increased surviving plant density up to 300% (depending on site) for both years of planting. High labor and plant material investments (relative to traditional drilling or broadcasting) may limit the size of projects for which sagebrush transplants are practical, but these costs may be partially offset by high success relative to traditional methods. Our data indicate that sagebrush transplants can be effective for establishing sagebrush on depleted sites.  相似文献   

9.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Invasion by medusahead is problematic because it decreases livestock forage production, degrades wildlife habitat, reduces biodiversity, and increases fire frequency. Revegetation of medusahead-invaded sagebrush steppe is needed to increase ecosystem and economic productivity. Most efforts to revegetate medusahead-infested plant communities are unsuccessful because perennial bunchgrasses rarely establish after medusahead control. The effects of prescribed burning (spring or fall), fall imazapic application, and their combinations were evaluated for medusahead control and the establishment of seeded large perennial bunchgrasses. One growing season after treatments were applied, desert wheatgrass (Agropyron desertorum [Fisch. ex Link] Schult.) and squirreltail (Elymus elymoides [Raf.] Swezey) were drill seeded into treatment plots, except for the control treatment. Vegetation characteristics were measured for 2 yr postseeding (second and third year post-treatment). Medusahead was best controlled when prescribed burned and then treated with imazapic (P < 0.05). These treatments also had greater large perennial bunchgrass cover and density compared to other treatments (P < 0.05). The prescribed burned followed by imazapic application had greater than 10- and 8-fold more perennial bunchgrass cover and density than the control treatment, respectively. Prescribed burning, regardless of season, was not effective at controlling medusahead or promoting establishment of perennial bunchgrasses. The results of this study question the long-term effectiveness of using imazapic in revegetation efforts of medusahead-infested sagebrush steppe without first prescribed burning the infestation. Effective control of medusahead appears to be needed for establishment of seeded perennial bunchgrasses. The results of this study demonstrate that seeding desert wheatgrass and squirreltail can successfully revegetate rangeland infested with medusahead when medusahead has been controlled with prescribed fire followed by fall application of imazapic.  相似文献   

10.
Observational studies of plant spatial patterns are common, but are often criticized for lacking a temporal component and for their inability to disentangle the effect of multiple community-structuring processes on plant spatial patterns. We addressed these criticisms in an observational study of Great Basin shrub-steppe communities that have been converted to a managed grazing system of planted crested wheatgrass (Agropyron cristatum [L.] Gaertn.) stands. We hypothesized that intraspecific interference and livestock grazing were important community-structuring processes that would leave unique spatiotemporal signatures. We used a survey-grade global positioning system to quantify crested wheatgrass spatial patterns along a chronosequence of stands that differed only in time since planting (9–57 yr), as well as in a 57-yr-old grazing exclosure to examine pattern formation in the absence of grazing. Three replicate survey plots were established in each stand, and a total of 6 197 grasses were marked with a spatial error of ≤ 2 cm. The data were analyzed using L-statistics in program R, and hypothesis testing was conducted using Monte Carlo simulation procedures. We detected fine-scale regularity, frequently considered a sign of interference via resource competition, in all stands including the exclosure. Coarser-scale aggregation, which we attributed to the effects of prolonged grazing disturbance, was only detected in the oldest grazed stand. Our results suggest that interference acts over finer spatial and temporal scales than grazing in structuring these stands, reinforcing the importance of interference in semiarid communities. Analysis of exclosure data suggests that, in the absence of grazing, crested wheatgrass stands organize into a statistically regular pattern when primarily influenced by interference. In the presence of prolonged grazing, crested wheatgrass stands become more heterogeneous over time, likely a result of seedling mortality via disturbance by cattle.  相似文献   

11.
12.
Revegetation of exotic annual grass−invaded rangelands is a primary objective of land managers following wildfires. Controlling invasive annual grasses is essential to increasing revegetation success; however, preemergent herbicides used to control annual grasses prohibit immediate seeding due to nontarget herbicide damage. Thus, seeding is often delayed 1 yr following herbicide application. This delay frequently allows for reinvasion of annual grasses, decreasing the success of revegetation efforts. Incorporating seeds into herbicide protection pods (HPPs) containing activated carbon (AC) permits concurrent high preemergent herbicide application and seeding because AC adsorbs and renders herbicides inactive. While HPPs have, largely in greenhouse studies, facilitated perennial bunchgrass emergence and early growth, their effectiveness in improving establishment of multiple species and functional groups in the field has not been assessed. Five bunchgrass species and two shrub species were seeded at two field sites with high imazapic application rates as bare seed and seed incorporated into HPPs. HPPs significantly improved establishment of sagebrush (Artemesia tridentata Nutt. Spp. wyomingensis Beetle & Young) and crested wheatgrass (Agropyron cristatum [L.] Gaertn.) over the 2-yr study. Three native perennial grass species were protected from herbicide damage by HPPs but had low establishment in both treatments. The two remaining shrub and grass species did not establish sufficiently to determine treatment effects. While establishment of native perennial bunchgrasses was low, this study demonstrates that HPPs can be used to protect seeded bunchgrasses and sagebrush from imazapic, prolonging establishment time in the absence of competition with annual grasses.  相似文献   

13.
Big sagebrush (Artemisia tridentata Nutt.) plant communities often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation responses to a two-way chain harrow treatment and broadcast seeding of 12 herbaceous species at eight Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle & Young) sites. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950 ? 1980s and then seeded with introduced forage grasses (C-S), while three had not been exposed to this land-use legacy (non C-S). Our objective was to evaluate whether the C-S legacy influences the magnitude of vegetation change following contemporary treatment. Before treatment, C-S sites had lower sagebrush cover, higher dead sagebrush cover, and higher broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) cover than adjacent non C-S sites. Plant community change 3 years after treatment, determined with multivariate ordination analysis of species composition, varied between site histories, and response to treatment was most strongly correlated with reductions in sagebrush cover, increases in perennial grasses, and increases in 10 other herbaceous species—including some undesirable species and four that were seeded in 2010. Five years after treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased in C-S sites during the second and third years after treatment. In addition, perennial forb cover increased for C-S sites, while perennial grass biomass increased for non C-S sites. Our results emphasize that broad variability in plant community responses to sagebrush reduction and seeding is possible within the same ecological site classification and that legacy effects due to the combination of past cultivation and seeding should be considered when planning restoration projects, including the consideration that seeding may not always be necessary on C-S sites.  相似文献   

14.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead-invaded to noninvaded sagebrush steppe communities is limited. This lack of knowledge makes it difficult to determine the cost–benefit ratio of controlling and preventing medusahead invasion. To estimate the impact of medusahead invasion, vegetation characteristics were compared between invaded and noninvaded Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) steppe communities that had similar soils, topography, climate, and management. Noninvaded plant communities had greater cover and density of all native herbaceous functional groups compared to medusahead-invaded communities (P < 0.01). Large perennial grass cover was 15-fold greater in the noninvaded compared to invaded plant communities. Sagebrush cover and density were greater in the noninvaded compared to the medusahead-invaded communities (P < 0.01). Biomass production of all native herbaceous functional groups was higher in noninvaded compared to invaded plant communities (P < 0.02). Perennial and annual forb biomass production was 1.9- and 45-fold more, respectively, in the noninvaded than invaded communities. Species richness and diversity were greater in the noninvaded than invaded plant communities (P < 0.01). The results of this study suggest that medusahead invasion substantially alters vegetation characteristics of sagebrush steppe plant communities, and thereby diminishes wildlife habitat, forage production, and ecosystem functions. Because of the broad negative influence of medusahead invasion, greater efforts should be directed at preventing its continued expansion.  相似文献   

15.
Western juniper (Juniperus occidentalis Hook.) encroachment and exotic annual grass (medusahead [Taeniatherum caput-medusae L. Nevski] and cheatgrass [Bromus tectorum L.]) invasion of sagebrush (Artemisia L.) communities decrease ecosystem services and degrade ecosystem function. Traditionally, these compositional changes were largely confined to separate areas, but more sagebrush communities are now simultaneously being altered by juniper and exotic annual grasses. Few efforts have evaluated attempts to restore these sagebrush communities. The Crooked River National Grassland initiated a project to restore juniper-encroached and annual grass-invaded sagebrush steppe using summer (mid-July) applied prescribed fires and postfire seeding. Treatments were unburned, burned, burned and seeded with a native seed mix, and burned and seeded with an introduced seed mix. Prescribed burning removed all juniper and initially reduced medusahead cover but did not influence cheatgrass cover. Neither the native nor introduced seed mix were successful at increasing large bunchgrass cover, and 6 yr post fire, medusahead cover was greater in burned treatments compared with the unburned treatment. Large bunchgrass cover and biological soil crusts were less in treatments that included burning. Exotic forbs and bulbous bluegrass (Poa bulbosa L.), an exotic grass, were greater in burned treatments compared with the unburned treatment. Sagebrush communities that are both juniper encroached and exotic annual grass invaded will need specific management of both juniper and annual grasses. We suggest that additional treatments, such as pre-emergent herbicide control of annuals and possibly multiple seeding events, are necessary to restore these communities. We recommend an adaptive management approach in which additional treatments are applied on the basis of monitoring data.  相似文献   

16.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk of frequent wildfires. However, it is unclear if revegetation efforts provide long-term benefits (fewer exotic annuals and more perennials). The limited literature available on the topic questions whether revegetation efforts reduce medusahead abundance beyond 2 or 3 yr. We evaluated revegetation of medusahead-invaded rangelands for 5 yr after seeding introduced perennial bunchgrasses at five locations. We compared areas that were fall-prescribed burned immediately followed by an imazapic herbicide treatment and then seeded with bunchgrasses 1 yr later (imazapic-seed) with untreated controls (control). The imazapic-seed treatment decreased exotic annual grass cover and density. At the end of the study, exotic annual grass cover and density were 2-fold greater in the control compared with the imazapic-seed treatment. The imazapic-seed treatment had greater large perennial bunchgrass cover and density and less annual forb (predominately exotic annuals) cover and density than the untreated control for the duration of the study. At the end of the study, large perennial bunchgrass density average 10 plant ? m? 2 in the imazapic-seed treatment, which is comparable with intact sagebrush steppe communities. Plant available soil nitrogen was also greater in the imazapic-seed treatment compared with the untreated control for the duration of the study. The results of this study suggest that revegetation of medusahead-invaded sagebrush steppe can provide lasting benefits, including limiting exotic annual grasses.  相似文献   

17.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

18.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting.  相似文献   

19.
Crested wheatgrass (Agropyron cristatum [L.] Gaertn.) and Russian wildrye (Elymus junceus Fisch.) are commonly used for reseeding in the more xeric Mixed Prairie of the Canadian prairies because they are perceived to be more productive than native species. However, they have been implicated in soil deterioration. The objectives of our study were to compare the aboveground net primary production and soil organic carbon (C) among monoculture communities of selected native grass species, crested wheatgrass, and Russian wildrye and to compare the native grass monocultures with their mixtures. In 1995, a 5-year study was initiated on Dark Brown Chernozemic (Typic Haploboroll) soil near Lethbridge, Alberta. Ten treatments consisting of monocultures of introduced and selected native species and mixtures of native species were established in a randomized complete block design with 4 replications. Aboveground net primary production and soil organic C were measured. Monocultures of 2 native species, green needlegrass (Stipa viridula Trin.) and blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Steud.), were more productive than crested wheatgrass or Russian wildrye under both normal moisture and drought conditions. Monocultures of these native species also tended to be more productive than their mixtures. The western wheatgrass (A. smithii Rydb.) monoculture and the western wheatgrass–blue grama mixture experienced the greatest yield reduction as a result of drought. Treatment effects on soil organic C were not detected (P > 0.05) 5 years after seeding. Soils of the June grass (Koeleria macrantha [Ledeb.] J.A. Schultes f.) community had less (P < 0.05) macro-organic C than most other treatments.  相似文献   

20.
Broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) increases and dominates rangelands following disturbances, such as overgrazing, fire, and drought. However, if cattle can be forced to graze broom snakeweed, they may be used as a biological tool to control it. Cattle grazed broom snakeweed in May and August 2004–2007. Narrow grazing lanes were fenced to restrict availability of herbaceous forage to force cattle to graze broom snakeweed. They used 50–85% of broom snakeweed biomass. Mature broom snakeweed plant density declined because of prolonged drought, but the decline was greater in grazed lanes. At the end of the study, density of mature plants in grazed lanes was 0.31 plants · m-2, compared with 0.79 plants · m-2 in ungrazed pastures. Spring precipitation in 2005 was 65% above average, and a new crop of seedlings established following the spring grazing trial. Seedling establishment was greater in the spring-grazed lanes in which the soil had been recently disturbed, compared with the ungrazed transects and summer-grazed lanes. The cattle were not able to use the large volume of new broom snakeweed plants in the spring-grazed pasture. They did reduce the number of seedlings and juvenile plants in the summer-grazed pasture. Intense grazing pressure and heavy use did not adversely affect crested wheatgrass (Agropyron cristatum [L.] Gaertn.) cover, and it was actually higher in the summer grazed lanes than the ungrazed control transects. In moderate stands of broom snakeweed, cattle can be forced to graze broom snakeweed and reduce its density without adversely affecting the associated crested wheatgrass stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号