首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prescribed fire in rangeland ecosystems is applied for a variety of management objectives, including enhancing productivity of forage species for domestic livestock. In the big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance, temporarily shifting vegetation from shrub–grass codominance to grass dominance. There is limited information on the impacts of grazing to community dynamics following fire in big sagebrush steppe. This study evaluated cattle grazing impacts over four growing seasons after prescribed fire on Wyoming big sagebrush (Artemisia tridentata subsp. Wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments included no grazing on burned and unburned sagebrush steppe, two summer-grazing applications after fire, and two spring-grazing applications after fire. Treatment plots were burned in fall 2002. Grazing trials were applied from 2003 to 2005. Vegetation dynamics in the treatments were evaluated by quantifying herbaceous canopy cover, density, annual yield, and perennial grass seed yield. Seed production was greater in the ungrazed burn treatments than in all burn–grazed treatments; however, these differences did not affect community recovery after fire. Other herbaceous response variables (cover, density, composition, and annual yield), bare ground, and soil surface litter did not differ among grazed and ungrazed burn treatments. All burn treatments (grazed and ungrazed) had greater herbaceous cover, herbaceous standing crop, herbaceous annual yield, and grass seed production than the unburned treatment by the second or third year after fire. The results demonstrated that properly applied livestock grazing after low-severity, prescribed fire will not hinder the recovery of herbaceous plant communities in Wyoming big sagebrush steppe.  相似文献   

2.
Grazing by cattle is ubiquitous across the sagebrush steppe; however, little is known about its effects on sagebrush and native bunchgrass structure. Understanding the effects of long-term grazing on sagebrush and bunchgrass structure is important because sagebrush is a keystone species and bunchgrasses are the dominant herbaceous functional group in these communities. To investigate the effects of long-term grazing on sagebrush and bunchgrass structure, we compared nine grazing exclosures with nine adjacent rangelands that were grazed by cattle in southeast Oregon. Grazing was moderate utilization (30 ? 45%) with altering season of use and infrequent rest. Long-term grazing by cattle altered some structural aspects of bunchgrasses and sagebrush. Ungrazed bunchgrasses had larger dead centers in their crowns, as well as greater dead fuel depths below and above the crown level compared with grazed bunchgrasses. This accumulation of dry fuel near the meristematic tissue may increase the probability of fire-induced mortality during a wildfire. Bunchgrasses in the ungrazed treatment had more reproductive stems than those in the long-term grazed treatment. This suggests that seed production of bunchgrasses may be greater in ungrazed areas. Sagebrush height and longest canopy diameter were 15% and 20% greater in the ungrazed compared with the grazed treatment, respectively. However, the bottom of the sagebrush canopy was closer to the ground in the grazed compared with the ungrazed treatment, which may provide better hiding cover for ground-nesting avian species. Sagebrush basal stem diameter, number of stems, amount of dead material in the canopy, canopy gap size, and number of canopy gaps did not differ between ungrazed and grazed treatments. Moderate grazing does not appear to alter the competitive relationship between a generally unpalatable shrub and palatable bunchgrasses. Long-term, moderate grazing appears to have minimal effects to the structure of bunchgrasses and sagebrush, other than reducing the risk of bunchgrass mortality during a fire event.  相似文献   

3.
Crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced bunchgrass, has been seeded on millions of hectares of sagebrush steppe. It can establish near-monocultures; therefore, reestablishing native vegetation in these communities is often a restoration goal. Efforts to restore native vegetation assemblages by controlling crested wheatgrass and seeding diverse species mixes have largely failed. Restoring sagebrush, largely through planting seedlings, has shown promise in short-term studies but has not been evaluated over longer timeframes. We investigated the reestablishment of Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S.L. Welsh) in crested wheatgrass communities, where it had been broadcast seeded (seeded) or planted as seedlings (planted) across varying levels of crested wheatgrass control with a herbicide (glyphosate) for up to 9 yr post seeding/planting. Planting sagebrush seedlings in crested wheatgrass stands resulted in full recovery of sagebrush density and increasing sagebrush cover over time. Broadcast seeding failed to establish any sagebrush, except at the highest levels of crested wheatgrass control. Reducing crested wheatgrass did not influence density, cover, or size of sagebrush in the planted treatment, and therefore, crested wheatgrass control is probably unnecessary when using sagebrush seedlings. Herbaceous cover and density were generally less in the planted treatment, probably as a result of increased competition from sagebrush. This trade-off between sagebrush and herbaceous vegetation should be considered when developing plans for restoring sagebrush steppe. Our results suggest that planting sagebrush seedlings can increase the compositional and structural diversity in near-monocultures of crested wheatgrass and thereby improve habitat for sagebrush-associated wildlife. Planting native shrub seedlings may be a method to increase diversity in other monotypic stands of introduced grasses.  相似文献   

4.
Livestock grazing potentially has substantial influence on fuel characteristics in rangelands around the globe. However, information quantifying the impacts of grazing on rangeland fuel characteristics is limited, and the effects of grazing on fuels are important because fuel characteristics are one of the primary factors determining risk, severity, continuity, and size of wildfires. We investigated the effects of long-term (70+ yr) livestock grazing exclusion (nongrazed) and moderate levels of livestock grazing (grazed) on fuel accumulations, continuity, gaps, and heights in shrub-grassland rangelands. Livestock used the grazed treatment through 2008 and sampling occurred in mid- to late summer in 2009. Nongrazed rangelands had over twofold more herbaceous standing crop than grazed rangelands (P < 0.01). Fuel accumulations on perennial bunchgrasses were approximately threefold greater in nongrazed than grazed treatments. Continuity of fuels in nongrazed compared to grazed treatments was also greater (P < 0.05). The heights of perennial grass current year’s and previous years’ growth were 1.3-fold and 2.2-fold taller in nongrazed compared to grazed treatments (P < 0.01). The results of this study suggest that moderate livestock grazing decreases the risk of wildfires in sagebrush steppe plant communities and potentially other semi-arid and arid rangelands. These results also suggest wildfires in moderately grazed sagebrush rangelands have decreased severity, continuity, and size of the burn compared to long-term nongrazed sagebrush rangelands. Because of the impacts fuels have on fire characteristics, moderate levels of grazing probably increase the efficiency of fire suppression activities. Because of the large difference between fuel characteristics in grazed and nongrazed sagebrush rangelands, we suggest that additional management impacts on fuels and subsequently fires need to be investigated in nonforested rangelands to protect native plant communities and prioritize management needs.  相似文献   

5.
Western juniper expansion is one of the largest threats to conserving sagebrush steppe ecosystems in the northwestern United States. Juniper expansion has degraded the sagebrush steppe by altering fire regimes and outcompeting shrubs and herbaceous vegetation for limited resources. We characterized the effect of juniper removal in a severely degraded sagebrush steppe habitat for 3 yr following juniper cutting. In addition, we measured the effect of low-intensity seasonal grazing on plant community recovery through cattle exclusion treatments. We monitored plant community composition (exotic annual grasses, preferred grasses, preferred forbs, and shrubs); fuel loads; and juniper recruitment in a factorial design of juniper removal and grazing exclusion. We found that although there were significant differences between cut and uncut juniper treatments, there were no consistent trends across all 3 yr. Our results suggest that other factors, such as timing of precipitation, may also have strong short-term effects on plant community composition. We detected no significant grazing effects during the study period, suggesting the current grazing regime is appropriate for the area. The cutting of juniper increased total fuel loads and herbaceous fuel loads. Compared with open interspace, a twofold increase in juniper seedlings and saplings was detected beneath juniper piles, which will act as sources for future juniper encroachment.  相似文献   

6.
There is limited information about the effects of cattle grazing to longer-term plant community composition and herbage production following fire in sagebrush steppe. This study evaluated vegetation response to cattle grazing over 7 yr (2007–2013) on burned Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & Young] Welsh) steppe in eastern Oregon. Treatments, replicated four times and applied in a randomized complete block design, included no grazing on burned (nonuse) and unburned (control) sagebrush steppe; and cattle grazing at low (low), moderate (moderate), and high (high) stocking on burned sagebrush steppe. Vegetation dynamics were evaluated by quantifying herbaceous (canopy and basal cover, density, production, reproductive shoot weight) and shrub (canopy cover, density) response variables. Aside from basal cover, herbaceous canopy cover, production, and reproduction were not different among low, moderate, and nonuse treatments. Perennial bunchgrass basal cover was about 25% lower in the low and moderate treatments than the nonuse. Production, reproductive stem weight, and perennial grass basal cover were greater in the low, moderate, and nonuse treatments than the control. The high treatment had lower perennial bunchgrass cover (canopy and basal) and production than other grazed and nonuse treatments. Bunchgrass density remained unchanged in the high treatment, not differing from other treatments, and reproductive effort was comparable to the other treatments, indicating these areas are potentially recoverable by reducing stocking. Cover and production of Bromus tectorum L. (cheatgrass) did not differ among the grazed and nonuse treatments, though all were greater than the control. Cover and density of A.t. spp. wyomingensis did not differ among the burned grazed and nonuse treatments and were less than the control. We concluded that light to moderate stocking rates are compatible to sustainable grazing of burned sagebrush steppe rangelands.  相似文献   

7.
The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate.  相似文献   

8.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

9.
Within the sagebrush steppe ecosystem, sagebrush plants influence a number of ecosystem properties, including nutrient distribution, plant species diversity, soil moisture, and temperature, and provide habitat for a wide variety of wildlife species. Recent increases in frequency and size of wildfires and associated annual grass expansion within the Wyoming big sagebrush alliance have increased the need for effective sagebrush restoration tools and protocols. Our objectives were to quay the success of Wyoming big sagebrush transplants relative to transplant stock (nursery seedlings vs. wildlings) across different ecological sites and vegetation types and to test the hypothesis that reduction of herbaceous vegetation would increase survival of transplanted sagebrush. We used a randomized block (reps = 5) design at each of three sites—1) cheatgrass dominated, 2) native plant dominated, and 3) crested wheatgrass dominated—near Elko, Nevada. Treatments included plant stock (nursery stock or locally harvested wildlings) and herbicide (glyphosate) to reduce competition from herbaceous vegetation. Transplants were planted in the spring of 2009 and 2010 and monitored for survival. Data were analyzed for site and treatment effects using mixed-model ANOVA. Surviving plant density at and 2 yr postplanting was generally highest (up to 3-fold) on the native site (P < 0.05). Density of surviving transplants was almost 3-fold higher for nursery stock on most sites for the 2009 planting, but differences in survival by planting stock were minimal for the 2010 planting. Glyphosate application increased surviving plant density up to 300% (depending on site) for both years of planting. High labor and plant material investments (relative to traditional drilling or broadcasting) may limit the size of projects for which sagebrush transplants are practical, but these costs may be partially offset by high success relative to traditional methods. Our data indicate that sagebrush transplants can be effective for establishing sagebrush on depleted sites.  相似文献   

10.
The Common Agricultural Policy supports the use of free-ranging cattle herds to control woody encroachment and fire hazards in Europe. There is, however, little empirical evidence about the effectiveness of extensive grazing to preserve open landscapes in the Mediterranean Basin. In this work, we evaluated the effects of extensive beef cattle grazing on the vegetation structure in a Mediterranean ecosystem using a twofold framework: 1) analyzing temporal changes in the forest, shrub, and grassland cover in areas under different grazing pressures for 16 yr (1993 ? 2009) and 2) studying diet selection to assess the impact of cattle on the local Mediterranean vegetation. Our landscape structure analyses revealed a remarkable change in land cover over the study period. However, woody community dynamics seemed to be more related to natural vegetation succession than to cattle effects. Extensive grazing seemed to preserve grasslands but only at high stocking rates. On the other hand, the diet analyses supported the lack of a role for cattle in encroachment control. Beef cattle diets were based on herbaceous plants (59%) with lower contribution of woody ones (41%). Cattle only showed a significant preference (P < 0.05) for few woody species (Erica multiflora, Olea europaea, Quercus ilex, and Rosmarinus officinalis), mostly at high-density stocking rates. Hence, our results support the idea that extensive cattle grazing alone exerts a negligible effect on shrub encroachment and thus on the risk of fire in the studied Mediterranean area. We urge a redesign of current research to truly integrate extensive cattle grazing as High Nature Value farming in European policies to successfully meet its putative goals, such as shrub encroachment control and wildfire risk prevention.  相似文献   

11.
Monotypic stands of crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced grass, occupy vast expanses of the sagebrush steppe. Efforts to improve habitat for sagebrush-associated wildlife by establishing a diverse community of native vegetation in crested wheatgrass stands have largely failed. Instead of concentrating on a diversity of species, we evaluated the potential to restore the foundation species, Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S. L. Welsh), to these communities. We investigated the establishment of Wyoming big sagebrush into six crested wheatgrass stands (sites) by broadcast seeding and planting seedling sagebrush across varying levels of crested wheatgrass control with glyphosate. Planted sagebrush seedlings survived at high rates (~ 70% planted sagebrush survival 3 yr postplanting), even without crested wheatgrass control. However, most attempts to establish sagebrush by broadcast seeding failed. Only at high levels of crested wheatgrass control did a few sagebrush plants establish from broadcasted seed. Sagebrush density and cover were greater with planting seedlings than broadcast seeding. Sagebrush cover, height, and canopy area were greater at higher levels of crested wheatgrass control. High levels of crested wheatgrass control also created an opportunity for exotic annuals to increase. Crested wheatgrass rapidly recovered after glyphosate control treatments, which suggests multiple treatments may be needed to effectively control crested wheatgrass. Our results suggest that planting sagebrush seedlings can structurally diversify monotypic crested wheatgrass stands to provide habitat for sagebrush-associated wildlife. Though this is not the full diversity of native functional groups representative of the sagebrush steppe, it is a substantial improvement over other efforts that have largely failed to alter these plant communities. We also hypothesize that planting sagebrush seedlings in patches or strips may provide a relatively inexpensive method to facilitate sagebrush recovery across vast landscapes where sagebrush has been lost.  相似文献   

12.
Heathlands in the northwest of Spain have been traditionally used by domestic herbivores as a food resource. However, their abandonment in the past decades has promoted a high incidence of wildfires, threatening biodiversity. Sheep and goats exhibit different grazing behavior, affecting rangelands dynamics in a different way, but the botanical and structural composition may also affect such dynamics. The aim of this article was to compare the grazing effects of sheep and goats on three different heathland types: previously burned grass- or gorse (Ulex gallii Planchon)-dominated and unburned heather (Erica spp.)-dominated shrublands. Two grazing treatments (sheep or goats) were applied in each vegetation type in a factorial design with two replicates (12 experimental plots). A small fenced area was excluded from grazing in each plot (control treatment). The experiment was carried out from 2003 to 2006, and the grazing season extended from May to October–November. Plant cover, canopy height, and phytomass amount and composition were assessed in each plot. Results showed that goats controlled shrub encroachment, phytomass accumulation, and canopy height more than sheep in either burned grass– and gorse– and unburned heather–dominated shrublands. It was accompanied by a higher increase of herbaceous species under goat grazing. Nevertheless, plant dynamics showed different trends between the three vegetation types studied. Grazing effects were more important in previously burned grass-dominated heathlands than in unburned heather-dominated shrublands. At the end of the experiment (May 2006), shrub cover, height, and woody phytomass were significantly higher in the ungrazed enclosures than in the grazed plots. Small ruminant grazing, especially with goats, is proposed as an efficient tool to reduce shrub encroachment and woody phytomass accumulation in heathlands, thus reducing fire hazard, although these grazing effects depend on heathland composition.  相似文献   

13.
Forage selection patterns of cattle in sagebrush (Artemisia L.) communities are influenced by a variety of environmental and plant-associated factors. The relative preference of cattle for interspace versus under-sagebrush canopy bunchgrasses has not been documented. Potential preferences may indirectly affect habitat for sage-grouse and other ground-nesting birds. Our objectives were to investigate grazing patterns of cattle with respect to undercanopy (shrub) and interspace tussocks, determine the influence of cattle grazing on screening cover, and relate shrub morphology to undercanopy grazing occurrence. Eighteen-day replicated trials were conducted in the summers of 2003 and 2004. Findings suggest cattle initially concentrate grazing on tussocks between shrubs, and begin foraging on tussocks beneath shrubs as interspace plants are depleted. Grazing of undercanopy grass tussocks was negligible at light-to-moderate utilization levels (< 40% by weight). Grass tussocks under spreading, umbrella-shaped shrub canopies were less likely (P < 0.001) to be grazed than those beneath erect, narrow canopies. Horizontal screening cover decreased (P < 0.001) with pasture utilization. At the trial’s end, removal of 75% of the herbaceous standing crop induced about a 5% decrease in screening cover in all strata from ground level to 1 m with no differences among strata (P = 0.531). This implied that shrubs constituted the majority of screening vegetation. Our data suggest that conservative forage use, approaching 40% by weight, will affect a majority (about 70%) of interspace tussocks and a lesser proportion (about 15%) of potential nest-screening tussocks beneath sagebrush. Probability of grazing of tussocks beneath shrubs, however, is also affected by shrub morphology. These findings will help managers design grazing programs in locales where habitat for ground nesting birds is a concern.  相似文献   

14.
If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass &lsqb;Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants &spigt; 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences on plant communities.  相似文献   

15.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma &lsqb;Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

16.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

17.
In 1999–2001 wildfires burned 1.13 million ha across northern Nevada, burning through many grazed riparian areas. With increases in wildfire frequency and extent predicted throughout the Great Basin, an understanding of the interactive effects of wildfire, livestock grazing, and natural hydrologic characteristics is critical. A comparison of pre- and postfire stream surveys provided a unique opportunity to statistically assess changes in stream survey attributes at 43 burned and 38 unburned streams. Livestock grazing variables derived from an extensive federal grazing allotment inventory were used to identify interactive effects of grazing strategies, fire, and natural stressors across 81 independent riparian areas. Differences between baseline and “postfire” stream survey attributes were evaluated for significance using the nonparametric Mann–Whitney test for paired data. Binary logistic regression models evaluated the influence of fire, grazing, and hydrologic characteristics on observed stream survey attribute changes. Grazing attributes contributed most significantly to the bankfull width increase and bank stability rating decrease models. The odds of bankfull width degradation (increase in bankfull width) decreased where there had been rest is some recent years compared to continuous grazing. As the number of days grazed during the growing season increased, the odds of bank stability degradation also increased. The occurrence of fire was not significant in any model. Variation in the riparian width model was attributed primarily to hydrologic characteristics, not grazing. For the models in which grazing variables played a role, stream survey attributes were more likely to improve over time when coupled with a history of rotational grazing and limited duration of use during the growing season. This supports long-term riparian functional recovery through application of riparian complementary grazing strategies.  相似文献   

18.
The growth of landscape-scale land management necessitates the development of methods for large-scale vegetation assessment. Field data collection and analysis methods used to assess ecological condition for the 47 165-h North Spring Valley watershed are presented. Vegetation cover data were collected in a stratified random design within 6 Great Basin vegetation types, and the probability of detecting change in native herbaceous cover was calculated using power analyses. Methods for using these quantitative assessment data are presented to calculate a departure index based on reference condition information from LANDFIRE (an interagency effort to map and model fire regimes and other biophysical characteristics at a mid-scale for the entire United States) Biophysical Setting models for the mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) vegetation type. For mountain big sagebrush in the North Spring Valley landscape, we found that the earliest successional classes were underrepresented and that mountain big sagebrush moderately invaded by conifers was more abundant than predicted by the LANDFIRE reference based on the historic range of variability. Classes that were most similar to the reference were mountain big sagebrush with the highest conifer cover and late development mountain big sagebrush with perennial grasses. Overall, results suggested that restoration or approximation of the historic fire regime is needed. This method provides a cost-effective procedure to assess important indicators, including native herbaceous cover, extent of woody encroachment, and ground cover. However, the method lacks the spatial information that would allow managers to comprehensively assess spatial patterns of vegetation condition across the mosaics that occur within each major vegetation type. The development of a method that integrates field measurements of key indicators with remotely sensed data is the next critical need for landscape-scale assessment.  相似文献   

19.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.  相似文献   

20.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis &lsqb;Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号