首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The demersal settlement of pelagic juvenile fish has been considered a critical period in which the final adjustment is made to the size of a year class. Distribution patterns of pelagic and recently settled juvenile cod (Gadus morhua) were examined from nine surveys on Georges Bank during the summer over 5 years, 1984–1989, to relate juvenile survival to the sedimentary environment. Pelagic juveniles were widespread across Georges Bank in June, and by mid‐July they occurred on all bottom types from sand to gravel on eastern Georges Bank. However, by late July‐early August they were mostly abundant on the northeastern edge gravel deposit, which with its complex relief, provides abundant prey and refuge from predators. A bank‐wide estimate of pelagic juvenile abundance in 1986 and 1987 was used to assess mortality of the recently settled juveniles and to evaluate the relative importance of survivors from the northeastern edge gravel area to recruitment of the Georges Bank population. Settlement mortality rates over 1–2 months on the northeastern gravel area ranged from 3 to 8% day?1, which compared reasonably with other studies. The seasonal abundance of the pelagic juveniles was almost an order of magnitude higher in 1987 than 1986; however, recruitment at age 1 was similar, indicating that a high mortality of the demersal juveniles occurred in 1987. The limited northeastern gravel area on Georges Bank may represent a survival bottleneck depending on the variability in the distribution and abundance of juvenile cod settlement in relation to that of their predators.  相似文献   

2.
We draw inferences about the dynamic processes responsible for the dispersal of ichthyoplankton on small marine banks using physical and biological data derived from static point-estimates of water-mass characteristics and ichthyoplankton collected concomitantly on the central Scotian Shelf. Where the density field evolves slowly and ageostrophic forcing is weak, the near-surface geostrophic flow can be derived from hydrographic data using the dynamic height method modified for shallow seas. We assess our interpretations of larval distributions using simple particle tracking. The hydrography of the Scotian Shelf during November of 1997 was typical of late autumn, when density is determined by surface variation in salinity. Surface isopycnals generally paralleled isobaths, and there was no evidence of strong surface fronts. Sizes of larvae of pelagic origin (e.g. cod and hake) on Western Bank (sole spawning source) increased and became skewed towards larger animals (cod, 3–10 mm; hake, 5–15 mm) in water-mass (Temperature and Salinity) space along isopycnals, consistent with gradual mixing and limited transport in the geostrophic flow (i.e. retention). Conversely, larvae of benthic origin (e.g. herring, 6–25 mm) were distributed across water-mass space, consistent with multiple origins and substantial transport. Our results indicate that dispersal from small, low-energy marine banks results from the interaction of spawning location, geostrophic currents and bathymetric steering, and requires neither convergence nor larval behaviour.  相似文献   

3.
The previous larval-trajectory modeling studies on Georges Bank were assessed through process-oriented Lagrangian-tracking comparison experiments using the high-resolution Gulf of Maine/Georges Bank Finite-Volume Coastal Ocean Model (GOM-FVCOM). The results indicate that in a strong nonlinear system such as Georges Bank, the passive tracer movement is driven by a fully three-dimensional Lagrangian flow field that varies in space and time due to large tidal excursion and steep bottom topography. The particle-tracking methods developed based on the assumption of weak nonlinearity of the flow field are not applicable to Georges Bank. The results of previous larval transport studies driven by circulation fields constructed under the weak-nonlinearity assumption need to be interpreted with caution. In the present work, the influence of model physical setups on sea scallop larval dispersal and settlement on Georges Bank and adjacent shelf regions is examined. Distinct differences in the spatial distribution of the passive larvae predicted by the model under various physical conditions suggest that a fully nonlinear model driven by realistic spatially and temporally varying forcing should be employed for Lagrangian-based studies of fishery population dynamics on Georges Bank.  相似文献   

4.
In the northwestern Mediterranean, most fish species reproduce in early summer and fewer in the autumn mixing period. This study analyses and compares larval fish assemblages (LFA) in both seasons, and is the first attempt to characterize LFA structure for the autumn period. We analyze horizontal and vertical distribution of fish larvae and the micro- and mesozooplankton biomass and abundance of the main zooplankton groups. The oceanographic situation was analyzed through the study of data from CTD, Nν-Shuttle and ADCP surveys. LFA were determined by ordination analyses based on larval abundance, and the relationships between larval assemblages and environmental variables were investigated through canonical correspondence analysis. The importance of some hydrographic variables (temperature, salinity and stability of the water column), current fields (along-shelf and across-shelf transport) and the abundance of zooplankton are discussed as important factors shaping the structure of larval assemblages. In early summer, LFA were mainly structured by a combination of bathymetry and trophic components, although sea surface temperature also played a role in shaping the horizontal larval distributions. In autumn, trophic variables were the main factors influencing the shelf-dwelling species assemblage. Larvae of oceanic species, on the other hand, were not related to trophic variables but were more affected by current fields.  相似文献   

5.
The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. As evident in the Georges Bank haddock (Melanogrammus aeglefinus) population, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. This research sought new insights into the mechanisms controlling the recruitment process in fish populations using biological–physical modeling methods together with laboratory and field data sets. We created the first three‐dimensional model of larval haddock on Georges Bank by coupling models of hydrodynamics, lower trophic levels, a single copepod species, and larval haddock. Interactions between feeding, metabolism, growth, vertical behavior, advection, predation, and the physical environment of larval haddock were quantitatively investigated using the coupled models. Particularly, the model was used to compare survival over the larval period and the sources of mortality in 1995 and 1998, 2 years of disparate haddock recruitment. The results of model simulations suggest that the increased egg hatching rates and higher food availability, which reduced starvation and predation, in 1998 contributed to its larger year‐class. Additionally, the inclusion of temperature‐dependent predation rates produced model results that better agreed with observations of the mean hatch date of survivors. The results from this biophysical model imply that food limitation and its related losses to starvation and predation, especially from hatch to 7 mm, may be responsible for interannual variability in recruitment and larval survival outside of the years studied.  相似文献   

6.
Surveys for lobster larvae in offshore waters of the north‐eastern Gulf of Maine in 1983, 1987 and 1989 confirm that local hatching occurs mainly at depths <100 m over the banks, including Georges and Browns Banks. Detailed studies in the vicinity of Georges Bank in late July of both 1987 and 1989 indicate that the first and second moult stages were located primarily over the bank whereas stages III and IV lobster were collected both over and off the bank. At times stage IV lobster were more abundant off the bank than over it. The condition of stage III and IV lobster, as measured by a lipid index, was better off than over Georges Bank in 1988 and 1989 indicating a possible physiological advantage to being off the bank. In addition, the higher surface temperatures off Georges Bank would shorten larval development time to settlement. To determine the probable hatch sites of stage IV lobster collected off of Browns Bank in 1983 and off of Georges in 1987 and 1989, a 3‐D circulation model of the Gulf of Maine was used to simulate larval lobster drift backwards in time. In all cases, areas off Cape Cod, MA, and off Penobscot Bay, ME were suggested as the source of the larvae, although most of the larval trajectories never reached these near‐shore waters that are well‐known, larval hatching areas. The model‐projected larval release times match most closely the observed inshore hatch off Massachusetts but model uncertainties mean that coastal Maine cannot be ruled out as a source. Georges Bank is also a potential source because the present model does not take into account short‐term wind events, off‐bank eddy transport or the possibility of directed off‐bank larval swimming. Examination of weather records prior to and during our 1988 and 1989 sampling periods indicates that winds were not of sufficient intensity and duration to induce larval transport off Georges Bank. The shedding of eddies from the northern flank of Georges Bank into the Gulf of Maine are a relatively common phenomenon during summer but not enough is known about them to evaluate their contribution to possible cross‐bank transport of lobster larvae. Directed larval swimming is another possible source for the stage IV lobster found near Georges Bank. Plankton distributions across the northern frontal zone of Georges Bank in 1988 were used as proxies for the scarce larval lobsters. The more surface distribution of the microplankton, in particular, supports the possibility that wind and eddy events may be important in the transport of stage III and IV lobsters off of Georges Bank. Further studies are needed to evaluate these possible additional sources of advanced stage lobster larvae found off of the offshore banks.  相似文献   

7.
Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal pelagic fish targeted by multiple lucrative fisheries. Determining the distribution of swordfish larvae is important for indicating reproductive activity and understanding the early life history of swordfish. We identify and characterize larval swordfish distributions during peak swordfish spawning throughout the Gulf of Mexico and western Caribbean Sea with generalized additive models (GAMs) using catches of swordfish larvae during ichthyoplankton surveys in April and May of 2010, 2011, and 2012. The best fit GAM, as determined by stepwise, backward Akaike Information Criterion selection, included both physiochemical (temperature at 5 m, sea surface height anomaly (SSHA), eddy kinetic energy (EKE)), temporal (lunar illumination, hour of sampling) and spatial (location) variables, while near surface chlorophyll a concentration residuals remained as a random effect. The highest probability of larval swordfish catch occurred at sub‐surface temperatures, SSHA, and EKE values indicative of boundary currents. Standard lengths of larvae were larger further downstream in the boundary currents, despite high variability in length with location due to multiple spawning locations of swordfish near these currents. Probability of larval swordfish catch also peaked during the crescent and gibbous moons, indicating a lunar periodicity to swordfish spawning. These results suggest that swordfish may spawn during select moon phases near boundary currents that transport their larvae to larval and juvenile habitat including the northern Gulf of Mexico and coastal waters of the southeast United States.  相似文献   

8.
We examined the efficacy of using commercial landings data to identify potential environmental correlates with fish distributions. Historical landings data for two commercially important species, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus), were used along with historical conductivity, temperature, and depth (CTD) data to infer monthly mean spatial distributions of catch per unit effort (CPUE), temperature, salinity, density, and stratification over Georges Bank. Relationships between CPUE and these environmental variables plus bottom sediment type and bottom depth were examined on seasonal, annual, and interannual time scales. Empirical analysis suggests that both cod and haddock are found preferentially in water temperatures of approximately 5°C in winter/spring, and as high as 10–11°C during late fall. Both species are also found preferentially over coarse sand and gravel as opposed to fine sand, and in water depths between 60 and 70 m. These preferences appear to vary seasonally. The above results are consistent with findings of previous investigators using semi‐annual research trawl survey data, and suggest that commercial landings data, despite their known errors and biases, can be used effectively to infer associations between fish and their environment.  相似文献   

9.
The distributions, concentrations, and community structure of pelagic larval fishes collected from the central and northern California Current in the northeast Pacific Ocean during May 2004, 2005, and 2006 were analyzed to investigate inter-annual, latitudinal, cross-shelf, and depth-stratified variability. The inter-annual climate-induced variability during the sampling period provided a unique opportunity to observe how larval fish communities adjust to rapidly changing environmental conditions. The 170 depth-stratified samples collected from three cruises yielded 14 819 fish larvae from 56 taxa representing 23 families. Dominant larval taxa were Engraulis mordax , Citharichthys spp., Sebastes spp., and Stenobrachius leucopsarus . Larval concentrations decreased significantly in 2006 from 2004 and 2005 levels following the anomalous oceanic conditions observed in 2005 and decreased water temperature in 2006. Larvae were generally found in higher concentrations at northern (>43°N) versus southern (<43°N) stations, with larval E. mordax and Citharichthys spp. found almost exclusively in the north during all sampled years. Inter-annual variability related to dynamic upwelling intensity was observed in cross-shelf larval distributions, although concentrations of S. leucopsarus larvae consistently increased in the offshore direction, while larval Sebastes spp. were generally found in highest concentrations at intermediate stations along the shelf. Multivariate analyses revealed that latitude, station depth, and sea-surface temperature were the most important factors explaining variability in larval concentrations. The present study shows that the ichthyoplankton community of the central and northern California Current changed dramatically in response to the variable environmental conditions of 2004–06.  相似文献   

10.
根据2015年5―7月在海州湾及邻近海域存在空间异质性的南北两个典型断面进行的鱼卵、仔稚鱼水平拖网调查数据,采用多元统计分析等方法研究了该海域春、夏季鱼类浮游生物群落的空间变化。结果表明,本次调查共获得鱼卵33587粒,仔稚鱼713尾。出现鱼卵25种(未定种1种),隶属于14科25属,仔稚鱼13种(未定种1种),隶属于13科13属。鱼卵优势种主要是鳀(Engraulis japonicus)、多鳞鱚(Sillago sihama)、(魚銜)属(Callionymus spp.)、皮氏叫姑鱼(Johnius belengerii)、江口小公鱼(Stolephorus commersonni)和短吻红舌鳎(Cynoglossus joyneri);仔稚鱼优势种主要是(魚銜)属和斑鰶(Konosirus punctatus)。鱼类浮游生物种类组成年代际变化明显,目前以生命周期短、个体小、资源更新节律快的小型鱼种为主;研究表明,鱼类浮游生物的优势种在不同月份和断面之间存在一定变化,5、6月南北两断面优势种组成不同,7月开始出现共同优势种。从鱼类浮游生物的空间分布来看,近岸海域的丰度较高,5、6月鱼类浮游生物的平均丰度均为北面断面1高于南面断面2,7月反之。鱼类浮游生物群落在两个典型断面随月份呈现出不同特征,水深、温度和盐等海洋环境因子综合影响着春、夏季海州湾及邻近海域鱼类浮游生物群落结构。  相似文献   

11.
This study aimed to identify the spatial and temporal patterns of composition and distribution of early life‐history stages of fish along an estuarine gradient. Samples were collected quarterly between April 2010 and January 2011 using conical‐cylindrical plankton nets in the Vaza Barris estuarine river system (NE Brazil). A total of 38,781 fish eggs and 3,526 larvae, representing 20 families and 42 taxa, were caught. The most abundant larval taxa were Microgobius meeki, Ctenogobius gr. smaragdus/boleosoma, Gobionellus oceanicus, Ctenogobius gr. stigmaticus/saepepallens/shufeldti, Bairdiella ronchus, Achirus sp., Trinectes sp., Stellifer rastrifer and S. stellifer, accounting together for 34.5% of the total catch. Ichthyoplankton distributions were characterized by high seasonal and spatial variability mainly attributed to the environmental characteristics of the estuary. Overall, lower estuarine region served as important accumulation areas for ichthyoplankton, concentrating the greatest diversity and abundance. Salinity gradient, water temperature, and inorganic nutrients were the main variables that affected the larval fish assemblages, presumably influencing spawning, development and survival of individuals or through their effect on food supply. Moreover, this study reinforced the concept that hydrological variations may have a strong influence on estuarine species retention and marine species immigration. Finally, this study highlights the importance of estuaries for the growth and maintenance of stocks of fish species, and the development of strategies to protect these habitats is of utmost relevance.  相似文献   

12.
We examined the dominant patterns of variability in the fish fauna of the southern California Current based on a principal component (PC) analysis of the California Cooperative Oceanic Fisheries Investigations ichthyoplankton data set, 1951–2008. Eighty‐six taxa were analyzed, including all ecologically dominant fish species, both exploited and unexploited. The first three PCs accounted for 20.5, 12.4 and 6.8% of the variance of the data, respectively (total: 39.7%). Each was dominated by taxa from particular adult or larval habitats. PC 1 predominantly represented the coherent response of 24 mesopelagic taxa from 10 families and was most highly correlated with long‐term trends in midwater oxygen levels. PC 2 was dominated by six of the seven most abundant ichthyoplankton taxa in the region, predominantly California Current endemics including key pelagic species (northern anchovy, Pacific sardine and Pacific hake), rockfishes (genus Sebastes) and two midwater taxa. It was correlated primarily with sea surface temperature and exhibited a significant declining trend. PC 3 was dominated by coastal and reef‐associated fishes with predominantly southerly affinities. It was positively correlated with sea surface temperature and sea level height, a proxy for diminished flow of the California Current. The taxa dominating PCs 2 and 3 mostly spatially co‐occur as ichthyoplankton. These results suggest that fish assemblages in the California Current are predominantly influenced by environmental forcing of their ocean habitats as adults or larvae, or both.  相似文献   

13.
Pelagic‐broadcast spawning is a dominant mode of fish reproduction in the oceans and is associated with Fundamental Triad (i.e. nutrient enrichment, nutrient concentration, propagule retention) and Loophole (i.e. disruption of larval competition and predation) processes that are mediated by water currents. Pelagic‐broadcast spawning is uncommon in freshwater, but is employed by an evolutionarily convergent spawning guild in rivers on the Great Plains, North America. We reviewed ecological studies of pelagic‐broadcast spawning minnows to evaluate whether Fundamental Triad and Loophole concepts explain the adaptive significance of this behaviour. Pelagic‐broadcast spawning minnows exhibit spawning periodicity dependent on floods. Nutrient enrichment, nutrient concentration and propagule retention are enhanced during flood recession. Retention is also enhanced by high fecundity and rapid development of pelagic‐broadcast propagules. Predation and competition threats are relatively low in temporary, patchily distributed nurseries present during flood recession. Extended spawning periods and diffusive spread of juveniles and adults ensure annual recruitment despite the unpredictable and often harsh conditions in rivers on the plains. Over the last century, pelagic‐broadcast spawners have suffered declines due to dewatering, flood control and sediment deprivation that disrupt natural Fundamental Triad and Loophole processes. We propose that restoration of conditions necessary for Fundamental Triad and Loophole processes to operate will be most successful at stopping decline and extinction of pelagic‐broadcast spawning minnows of the Great Plains.  相似文献   

14.
Larval fish assemblages were sampled using replicated oblique bongo net tows along a five‐station transect extending from inshore (18 m depth) to offshore waters (1000 m depth) off temperate south‐western Australia. A total of 148 taxa from 93 teleost families were identified. Larvae of Gobiidae and Blenniidae were abundant inshore, while larvae of pelagic and reef‐dwelling families, such as Clupeidae, Engraulidae, Carangidae and Labridae were common in continental shelf waters. Larvae of oceanic families, particularly Myctophidae, Phosichthyidae and Gonostomatidae, dominated offshore assemblages. Multivariate statistical analyses revealed larval fish assemblages to have a strong temporal and spatial structure. Assemblages were distinct among seasons, and among inshore, continental shelf and offshore sampling stations. Inshore larval fish assemblages were the most seasonal, in terms of species composition and abundance, with offshore assemblages the least seasonal. However, larval fish assemblages were most closely correlated to water mass, with species distributions reflecting both cross‐shelf and along‐shore oceanographic processes and events. Similarity profile (SIMPROF) analysis suggested the presence of twelve distinct larval fish assemblages, largely delineated by water depth and season. The strength and position of the warm, southward flowing Leeuwin Current, and of the cool, seasonal, northward flowing Capes Current, were shown to drive much of the variability in the marine environment, and thus larval fish assemblages.  相似文献   

15.
Throughout the North Atlantic, the copepod Calanus finmarchicus dominates the zooplankton biomass, linking primary production and higher trophic levels. On Georges Bank, the peak abundance of larval (naupliar) stages occurs in March–April and represents a potential source of prey for cod and haddock larvae. Following this maximum, naupliar abundance declines dramatically, reaching a minimum in May and increasing again in June. Explaining the naupliar seasonal cycle is critical for predicting climate effects on C. finmarchicus dynamics, including whether environmental variability may lead to a mismatch with larval fish. Here, an age-within-stage population dynamics model is used to investigate the factors controlling the temporal variation of C. finmarchicus nauplii in three Georges Bank sub-regions. The model incorporates temperature- and food-dependent development and egg production, as well as female abundance derived from the US Global Ocean Ecosystem Dynamics (GLOBEC) program. Use of field-estimated constant mortality rates overestimates May abundances by as much as an order of magnitude. These data/model discrepancies can not be explained by temperature or food-limitation effects on physiological rates. Instead, accurate simulation requires use of time-varying early stage mortalities, which differ from published estimates in both magnitude and trend. These mortality rates are correlated with C. finmarchicus female abundance, implying cannibalism as a possible regulatory factor. Thus, the biological control of predation (including cannibalism) must be considered to predict the effects of climate on C. finmarchicus and associated larval fish populations.  相似文献   

16.
Conditions affecting distributions of larval walleye pollock ( Theragra chalcogramma ) were examined at Shelikof Strait, Alaska, during springtime, 1986 and 1987. Abundance and distribution of larval pollock southwest of the Strait's southern entrance was determined with oblique plankton tows taken each year in May. Infrared images of sea surface temperature patterns were derived from AVHRR scenes obtained by NOAA satellites during each April and May. Pattern displacements between 24-hour-interval images were used to estimate surface motion. Each spring, measurements were taken by remote weather stations and ships, and a nearsurface current meter record was obtained during 1987. Treated as quasi-synoptic, spatial relations between sets of surface temperature, surface flow, and larval pollock distributions show coincidences between submesoscale physical and biological features. The highest larval abundances occurred as patches within a cold plume (1986) and an eddy (1987). These confirm that physical features can retain larval pollock on the continental shelf. Observations are examined for evidence of physical and biological events that jointly can cause such coincidences and foster alternatives for survival during transport to nursery grounds. Explanations for presence of cohorts observed within the 1987 eddy are given in terms of spatial and temporal relationships evident between spawning and hatching areas, hatch date distributions, meanders, eddy generation and movement, background flow, and advection times. The observations, analyses, and results are consistent with the concept of a coupled, fluctuating biophysical process that can emulate variations in larval abundance and provide a multiplicity of system pathways for early-life stages representations.  相似文献   

17.
Understanding spatial and temporal patterns in larval fish distributions is important for investigating factors related to recruitment variability and for developing sampling methodologies. Variation in species diversity (Shannon index) and density (number 100 m?3) of larval fishes from nearshore and pelagic habitats in Glen Elder Reservoir, KS, USA, was assessed during 1999 and 2000. Species diversity and densities of individual taxa were significantly higher (P < 0.05) in nearshore habitats than pelagic habitats during both years. Larval fish densities were generally higher in the year 1999 with higher spring water levels. Gizzard shad Dorosoma cepedianum (Lesueur) was the most abundant taxon in nearshore and pelagic habitats during both years. In addition, larval gizzard shad was sampled for the longest duration in the upper water column and overlapped with all taxa collected. High densities of gizzard shad in both habitats suggested that the potential for competitive interactions was high, especially given the lack of aquatic vegetation and habitat heterogeneity in littoral habitats. Most of the variation in larval fish diversity and density was because of temporal variation. If sampling effort must be limited and the purpose of sampling is to monitor larval diversity or density, attention should focus on sampling the same location over long time periods rather than across a variety of sampling locations.  相似文献   

18.
19.
A short synthesis of the present state of the ctenophore, Mnemiopsis leidyi , invasion in the Black Sea is given, together with a brief review of its status in other areas of the Mediterranean basin. The impact of M. leidyi on the main components of the pelagic community, mesozooplankton, ichthyoplankton and fish resources, based on published data and new field studies (1992–1997) are analysed. This assessment showed sharp fluctuations in the interannual abundance of M. leidyi . The main factors controlling the spatial distribution of M. leidyi were temperature and, to a lesser degree, salinity, whereas its abundance was controlled by food availability. An analysis of the main constituents of the pelagic ecosystem of the Black Sea before the M. leidyi outbreak showed that a reduction in numbers of planktivorous fishes, the main competitors of M. leidyi, could be a possible reason for the upsurge in abundance of M. leidyi. Following the increase of M. leidyi , there was a decline in the abundance and species diversity of ichthyoplankton and mesozooplankton. An assessment of data collected during the period 1992–1997 showed that the number of fish eggs and larvae and of zooplankton was negatively related to M. leidyi abundance. After the recent decrease of M. leidyi in the period 1995–1997, there has been an increase in abundance and diversity of fish eggs, fish larvae, and zooplankton, which together with an increased catch of planktivorous fish indicates that there has been a recovery of the ecosystem.  相似文献   

20.
Climate‐induced nonlinearity in biological variability and non‐stationary relationships with physical drivers are crucial to understand responses of marine organisms to climate variability. These phenomena have raised concerns in the northeastern North Pacific, but are out of the spotlight in the northwestern North Pacific in spite of potential implications for this productive system under increased climate variability. Pelagic communities in the Kuroshio ecosystem have both ecological and economic importance. However, patterns of climate‐induced nonlinearity in pelagic communities are not well understood, and existence of non‐stationarity in their relationships with physical drivers remains obscure. Here, we compile large numbers of climatic, oceanic and biological long‐term time‐series data and employ diverse statistical techniques to reveal such climate‐induced nonlinearity and non‐stationarity. Results show that pelagic communities in the Tsushima and Pacific areas (major areas in the Kuroshio ecosystem) had regime shifts in the late 1990s and late 1980s, respectively. Winter sea surface temperatures in the Kuroshio Current path and in the eastern part of East China Sea, which are respectively affected by the Kuroshio Current and Siberian High, correlate with dominant variability patterns in their pelagic communities. Furthermore, non‐stationarity was identified with threshold years in the 1990s in the Tsushima area and in the 1980s in the Pacific area as a possible result of the declined variances in the Siberian High and Aleutian Low, respectively. Our findings provide insights on spatial differentiation of climate‐induced nonlinearity and non‐stationarity, which are valuable for the management of pelagic communities in the northwestern North Pacific under changing climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号