首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this study was to quantify and compare the effects of two different deficit irrigation (DI) strategies (regulated deficit irrigation, or RDI, and partial rootzone drying, PRD) on almond (Prunus dulcis (Mill.) D.A. Webb) fruit growth and quality. Five irrigation treatments, ranging from moderate to severe water restriction, were applied: (i) full irrigation (FI), irrigated to satisfy the maximum crop water requirements (ETc); (ii) regulated deficit irrigation (RDI), receiving 50% of ETc during the kernel-filling stage and at 100% ETc throughout the remaining periods; and three PRD treatments – PRD70, PRD50 and PRD30 – irrigated at 70%, 50% and 30% ETc, respectively, during the whole growth season. The DI treatments did not affect the overall fruit growth pattern compared to the FI treatment, but they had a negative impact on the final kernel dry weight for the most stressed treatments. The allocation of water to the different components of the fruit, characterized by the fresh weight ratio of kernel to fruit, appeared to be the process most clearly affected by DI. Attributes of the kernel chemical composition (lipid, protein, sugar and organic acid contents) were not negatively affected by the intensity of water deprivation. Overall, our results indicated that PRD did not present a clear advantage (or disadvantage) over RDI with regard to almond fruit growth and quality.  相似文献   

2.
The impact that different regulated-deficit irrigation (RDI) treatments exert on a 12-year-old orange orchard (Citrussinensis L. Osbeck, cv. salustiano) was studied from 2004 to 2007. The experiment consisted of a control irrigation treatment which was irrigated at 100% of the crop evapotranspiration (ETc) values for the whole season, and three deficit treatments imposed as a function of the water-stress index (WSI), which is defined as the ratio of the actual volume of water supply to the ETc rate. In our case, these WSI values were 0.75, 0.65, and 0.50, respectively. The stem-water potential at noon (ΨStem) was used as a parameter to estimate the water status of the plant. Yield and fruit quality was evaluated at harvest in each treatment (taking into account the temporal variability of the results due to the climatic characteristics of each of the years of this study) and an overall analysis was made using the whole dataset. Significant differences were found in fruit quality parameters (total soluble solids and titrable acidity), which also showed significant regression coefficients with the values of the integrated stem-water potential. These results led us to conclude that in mature orange trees grown under these conditions, regulated-deficit irrigation has important and significant effects on the final fruit quality, but the effects are not so clear-cut in tree yield, where the differences in the case of reducing a 50% of the crop ETc, were not considered to be statistically significant despite an approximate 10% decrease in fruit yield. A global rescaled distance cluster analysis was performed in order to summarize the main relationships between the variables evaluated and to establish a different correlation matrix. Finally, a classification tree was derived and principal-component analysis was undertaken in order to identify and evaluate the variables which had the strongest effect on the crop response to different irrigation treatments.  相似文献   

3.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

4.
Irrigation scheduling based on the daily historical crop evapotranspiration (ETh) data was theoretically and experimentally assessed for the major soil-grown greenhouse horticultural crops on the Almería coast in order to improve irrigation efficiency. Overall, the simulated seasonal ETh values for different crop cycles from 41 greenhouses were not significantly different from the corresponding values of real-time crop evapotranspiration (ETc). Additionally, for the main greenhouse crops on the Almería coast, the simulated values of the maximum cumulative soil water deficit in each of the 15 consecutive growth cycles (1988–2002) were determined using simple soil-water balances comparing daily ETh and ETc values to schedule irrigation. In most cases, no soil-water deficits affecting greenhouse crop productivity were detected, but the few cases found led us to also assess experimentally the use of ETh for irrigation scheduling of greenhouse horticultural crops. The response of five greenhouse crops to water applications scheduled with daily estimates of ETh and ETc was evaluated in a typical enarenado soil. In tomato, fruit yield did not differ statistically between irrigation treatments, but the spring green bean irrigated using the ETh data presented lower yield than that irrigated using the ETc data. In the remaining experiments, the irrigation-management method based on ETh data was modified to consider the standard deviation of the inter-annual greenhouse reference ET. No differences between irrigation treatments were found for productivity of pepper, zucchini and melon crops.  相似文献   

5.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

6.
Effect of irrigation method and quantity on squash yield and quality   总被引:1,自引:0,他引:1  
Squash yield and quality under furrow and trickle irrigation methods and their responses to different irrigation quantities were evaluated in 2010 spring and fall growing seasons. A field experiment was conducted using squash (Cucurbita pepo L.) grown in northern Egypt at Shibin El Kom, Menofia. A randomized split-plot design was used with irrigation methods as main plots and different irrigation quantities randomly distributed within either furrow or trickle irrigation methods. Irrigation quantity was a fraction of crop evapotranspiration (ETc) as: 0.5, 0.75, 1.0, 1.25, and 1.5 ETc. Each treatment was repeated three times, two of five rows from each replicate were left for squash seed production. In well-watered conditions (1.0 ETc), seasonal water use by squash was 304 and 344 mm over 93 days in spring and 238 and 272 mm over 101 days in fall under trickle and furrow irrigation methods, respectively. Squash fruit yield and quality were significantly affected by season and both irrigation method and quantity. Fruit number and length were not affected by irrigation method and growing season, respectively. Interaction between season and irrigation quantity significantly affected leaf area index, total soluble solid (TSS), and fruit weight. Moreover, seed yield and quality were significantly affected by growing season and both irrigation method and quantity except harvest index, which was not affected by irrigation method. Significant differences for the interaction between season and irrigation method were only found for seed yield and 100 seeds weight. Except for harvest index, no significant difference was observed by interaction between season and irrigation quantity. Both fruit and seed yields were significantly affected in a linear relationship (r2 ≥ 0.91) by either deficit or surplus irrigation quantities under both irrigation methods. Adequate irrigation quantity under trickle irrigation, relative to that of furrow, enhanced squash yield and improved its quality in both growing seasons. Fall growing season was not appropriate for seed production due to obtaining many of empty seeds caused by low weather variables at the end of the season. The results from small experiment were extrapolated to large field to find out optimal irrigation scheduling under non-uniform of irrigation application.  相似文献   

7.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

8.
Adoption of water-saving irrigation strategies is necessary especially for grapevine that has the highest acreage of any fruit crop in the world. We applied deficit irrigation to Chardonnay wine grape at the following phenological stages: anthesis to fruit set, fruit set to veraison, and veraison to harvest. Four irrigation levels (0, 25, 50, and 100?% of crop evapotranspiration, ET c ) were applied in 2009. Vines grown in large containers were used to enable imposition of water stress early in the growing season. The following parameters were measured: midday leaf water potential, vine growth, yield, and quality of must and wine. The same parameters were measured in 2010 although all vines were fully irrigated. The 0 and 25?% treatments caused defoliation and had negative impacts on yield and wine quality in both 2009 and 2010. Chardonnay was most sensitive to water stress in post-veraison in terms of productivity and wine quality.  相似文献   

9.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   

10.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

11.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

12.
This study assesses the long-term suitability of regulated (RDI) and sustained deficit irrigation (SDI) implemented over the first six growing seasons of an almond [Prunus dulcis (Mill.) D.A. Webb] orchard grown in a semiarid area in SE Spain. Four irrigation treatments were assessed: (i) full irrigation (FI), irrigated to satisfy maximum crop evapotranspiration (100% ETc); (ii) RDI, as FI but receiving 40% ETc during kernel-filling; (iii) mild-to-moderate SDI (SDImm), irrigated at 75–60% ETc over the entire growing season; and (iv) moderate-to-severe SDI (SDIms), irrigated at 60–30% ETc over the whole season. Application of water stress from orchard establishment did not amplify the negative effects of deficit irrigation on almond yield. Irrigation water productivity (IWP) increased proportionally to the mean relative water shortage. SDIms increased IWP by 92.5%, reduced yield by 29% and applied 63% less irrigation water. RDI and SDImm showed similar productive performances, but RDI was more efficient than SDImm to increase fruiting density and production efficiency (PE). We conclude that SDIms appears to be a promising DI option for arid regions with severe water scarcity, whereas for less water-scarce areas RDI and SDImm behaved similarly, except for the ability of RDI to more severely restrict vegetative development while increasing PE.  相似文献   

13.
The reproductive growth and water productivity (WPb) of Thompson Seedless grapevines were measured as a function of applied water amounts at various fractions of measured grapevine ETc for a total of eight irrigation treatments. Shoots were harvested numerous times during the growing season to calculate water productivity. Berry weight was maximized at the 0.6–0.8 applied water treatments across years. As applied water amounts increased soluble solids decreased. Berry weight measured at veraison and harvest was a linear function of the mean midday leaf water potential measured between anthesis and veraison and anthesis and harvest, respectively. As applied water amounts increased up to the 0.6–0.8 irrigation treatments there was a significant linear increase in yield. Yields at greater applied water amounts either leveled off or decreased. The reduction in yield on either side of the yearly maximum was due to fewer numbers of clusters per vine. Maximum yield occurred at an ETc ranging from 550 to 700 mm. Yield per unit applied water and WPb increased as applied water decreased. The results from this study demonstrated that Thompson Seedless grapevines can be deficit irrigated, increasing water use efficiency while maximizing yields.  相似文献   

14.
The applicability of commercially available remote sensing instrumentation was evaluated for site-specific management of abiotic and biotic stress on cotton (Gossypium hirsutum L.) grown under a center pivot low energy precision application (LEPA) irrigation system. This study was conducted in a field where three irrigation regimes (100%, 75%, and 50% ETc) were imposed on areas of Phymatotrichum (root rot) with the specific objectives to (1) examine commercial remote sensing instrumentation for locating areas showing biotic and abiotic stress symptomology in a cotton field, (2) compare data obtained from commercial aerial infrared photography to that collected by infrared transducers (IRTs) mounted on a center pivot, (3) evaluate canopy temperature changes between irrigation regimes and their relationship to lint yield with IRTs and/or IR photography, and (4) explore the use of deficit irrigation and the use of crop coefficients for irrigation scheduling. Pivot-mounted IRTs and an IR camera were able to differentiate water stress among irrigation regimes. The IR camera distinguished between biotic (root rot) and abiotic (drought) stress with the assistance of groundtruthing. The 50% ETc regime had significantly higher canopy temperatures than the other two regimes, which was reflected in significantly lower lint yields when compared to the 75% and 100% ETc regimes. Deficit irrigation down to 75% ETc had no impact on lint yield, indicating that water savings were possible without reducing yield.  相似文献   

15.
The aim of this work was to apply one strategy of deficit irrigation (DI) to improve the final fruit quality in 10-year-old ‘Lane late’ sweet orange grafted on Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L.). The experiment was carried out over 2 years in an experimental orchard located in Torre Pacheco (Murcia, south-east Spain). The deficit irrigation treatment consisted of the stopping of irrigation in phase III of fruit growth (1st October-28th February). The irrigation cut-off in phase III reduced the midday stem water potential (Ψmd), the plant water status being heavily influenced by rainfall. In both years, the DI treatment did not alter fruit yield although mean fruit weight was slightly reduced. The main effects of DI on the final fruit quality were increases of total soluble solids (TSS) and titratable acidity (TA) and a decrease of juice percentage without altering the final maturity index. Plant water-stress integral (SΨ) was correlated positively with TSS and TA and negatively with juice percentage. In conclusion, a DI strategy could be useful for improving the final content of TSS and the TA, therefore allowing the harvest to be delayed.  相似文献   

16.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

17.
Field experiments were conducted in 2008 and 2009 to determine the effects of deficit irrigation on yield and water use of field grown eggplants. A total of 8 irrigation treatments (four each year), which received different amounts of irrigation water, were evaluated. In 2008, deficit irrigation was applied at full vegetative growth (WS-V), pre-flowering (WS-F) and fruit ripening (WS-R), while in 2009 deficit irrigation was applied during the whole growing season at 80 (WS-80), 60 (WS-60) and 40% (WS-40) of field capacity. Deficit-irrigated treatments were in both years compared to a well irrigated control. Regular readings of soil water content (SWC) in 2008 and 2009 showed that average soil water deficit (SWD) in the control was around 30% of total available water (TAW) while in deficit-irrigated treatments it varied between 50 and 75% of TAW. In 2008, deficit irrigation reduced fruit fresh yield by 35, 25 and 33% in WS-V, WS-F and WS-R treatments, respectively, when compared to the control (33.0 t ha−1). However, the reduction in fresh yield in response to deficit irrigation was compensated by an increase in fruit mean weight. Results obtained in 2009 showed that fruit fresh yield in the control was 33.7 t ha−1, while it was 12, 39 and 60% less in WS-80, WS-60 and WS-40 treatments, respectively. On the other hand, fruit dry matter content and water productivity were found to increase significantly in both years in deficit-irrigated treatments. Applying deficit irrigation for 2 weeks prior to flowering (WS-F) resulted in water saving of the same magnitude of the WS-80 treatment, with the least yield reduction, making more water available to irrigate other crops, and thereby considered optimal strategies for drip-irrigated eggplants in the semi-arid climate of the central Bekaa Valley of Lebanon.  相似文献   

18.
Water consumption of table grapevines (Vitis vinifera cv. Superior Seedless) trained to a large open-canopy gable system was measured during six growing seasons (1999, 2001–2005) using 12 drainage lysimeters. The lysimeters (1.3 m3 each) were installed as part of a one-hectare vineyard in a semi-arid region in southern Israel. Water consumption of the lysimeter-grown vines (ETc) was used as the basis for the calculation of irrigation applications in the vineyard. Three irrigation treatments, 80% (high), 60% (medium) and 40% (low) of ETc of the lysimeter-grown vines, were applied in the vineyard. Reference evapotranspiration (ETo) was calculated from regional meteorological data according to the Penman–Monteith equation. Seasonal curves for the crop coefficient (K c) were calculated as K c = ETc/ETo. Maximum ETc values in different seasons ranged from 7.26 to 8.59 mm day−1 and seasonal ETc (from DOY 91 through DOY 304) ranged from 1,087 to 1,348 mm over the six growing seasons. Leaf area index (LAI) was measured monthly using the SunScan Canopy Analysis System. Maximum LAI ranged from 4.2 to 6.2 m2 m−2 for the 2002–2005 seasons. A second-order polynomial curve relating K c to LAI (R2 = 0.907, P < 0.0001) is proposed as the basis for efficient irrigation management. The effects of the irrigation treatments on canopy growth and yield are presented. The high ETc and K c values that were observed are explained by the wide canopy layout that characterize the large open-gable trellis system.  相似文献   

19.
Growth and yield responses of developing almond trees (Prunus amygdalus, Ruby cultivar) to a range of trickle irrigation amounts were determined in 1985 through 1987 (the fifth through seventh year after planting) at the University of California's West Side Field Station in the semi-arid San Joaquin Valley. The treatments consisted of six levels of irrigation, ranging from 50 through 175% of the estimated crop evapotranspiration (ETc), applied to a clean-cultivated orchard using a line source trickle irrigation system with 6 emitters per tree. ETc was estimated as grass reference evapotranspiration (ET0) times a crop coefficient with adjustments based upon shaded area of trees and period during the growing season. Differential irrigation experiments prior to 1984 on the trees used in this study significantly influenced the initial trunk cross-section area and canopy size in the 50% ETc treatment and 125% ETc treatment. In these cases, treatment effects must be identified as relative effects rather than absolute. The soil of the experimental field was a Panoche clay loam (nonacid, thermic, Typic Torriorthents). The mean increase in trunk cross-sectional area for the 3-year period was a positive linear function (r 2 = 0.98) of total amounts of applied water. With increases in water application above the 50% ETc treatment, nut retention with respect to flower and fertile nut counts after flowering, was increased approximately 10%. In 1985 and 1987, the nut meat yields and mean kernel weights increased significantly with increasing water application from 50% to 150% ETc. Particularly in the higher water application treatments, crop consumptive use was difficult to quantify due to uncertainty in estimates of deep percolation and soil water uptake. Maintenance of leaf water potentials higher than –2.3 MPa during early nut development (March through May) and greater than –2.5 MPa the remainder of the irrigation season (through August) were positively correlated with sustained higher vegetative growth rates and higher nut yields.  相似文献   

20.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号