首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钙对铬胁迫下玉米幼苗生长及生理特性的影响   总被引:1,自引:0,他引:1  
采用含有CrCl3及CaCl2的培养液培养,研究了不同浓度钙和铬处理对玉米幼苗的叶片、株高、根长、鲜重、含水量、叶绿素、保护酶系统(SOD、POD、CAT活性)以及丙二醛(MDA)含量的影响。结果表明,单一铬处理,随着铬浓度增加,玉米植株生长明显受到抑制,株高、根长、鲜重、含水量、叶绿素含量以及CAT活性下降,SOD、POD活性上升,MDA含量增加。单一钙处理,当浓度小于160 mg/L时,明显促进植株生长,株高、根长、鲜重、含水量、叶绿素含量增加,CAT活性上升,POD活性和MDA含量下降;当钙浓度大于160 mg/L时促进效果则开始下降。钙、铬混合处理,一定浓度的钙有抑制或者缓解铬毒害的作用,减轻铬胁迫对株高、根长、鲜重和含水量的抑制,提高叶绿素含量和CAT活性,降低SOD、POD活性和MDA含量。  相似文献   

2.
Summary Calcium uptake into potato plants was examined using test solutions containing 5% safranin dye (C20H19N4C1 mw 350.85) and the radiotracer45CaCl2. When minitubers were suspended in test solutions for up to 5 days, safranin moved into the outer pith tissues while45Ca2+ was located throughout the pith. Ca2+ is apparently taken up directly from the tubersphere by a slow diffusion process. Plantlets with one microtuber were used to investigate calcium uptake via basal roots.45Ca2+ was well ahead of the safranin dye front in all plantlet stems.45Ca2+ in shoot tips was significantly greater than in microtubers and no safranin entered the microtubers. Greenhouse-grown ex vitro plantlets with minitubers attached were used to determine the relative uptake by basal and stolon roots. Basal root feeding contributed significantly more45Ca2+ to shoot tips and tubers than stolon root feeding while combined feeding gave the greatest shoot tip and tuber45Ca2+ levels.  相似文献   

3.
A greenhouse study was conducted to determine the effects of waters differing in salt composition on growth and selenium (Se) accumulation by lesquerella (Lesquerella fendleri Gray S. Wats.). Plants were established by direct seeding into sand cultures and irrigated with solutions containing either (a) Cl as the dominant anion or (b) a mixture of salts of SO42− and Cl. Four treatments of each salinity type were imposed. Electrical conductivities of the irrigation waters were 1.7, 4, 8, and 13 dS m−1. Two months after salinization, Se (l mg l−1, 12.7 μM) was added to all solutions as Na2SeO4. Shoot growth was significantly reduced by increasing Cl-salinity. Regardless of salinity type, concentrations of Ca2+, Mg2+, Cl, total-S, and Se were higher in the leaves than the stems, whereas K+ and Na+ were higher in the stem. Leaf-Se concentrations were not significantly affected by Cl-based irrigation waters, averaging 503 mg Se kg−1 dry wt across salinity levels, whereas leaf-Se decreased consistently and significantly from 218 to 13 mg kg−1 as mixed salt salinity increased. The dramatic reduction in Se was attributed to SO42−:SeO42− competition during plant uptake. The strong Se-accumulating ability of lesquerella suggests that the crop should be further evaluated as a potentially valuable phytoremediator of Se-contaminated soils and waters of low to moderate salinity in areas where the dominant anion in the substrate is Cl.  相似文献   

4.
复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选   总被引:2,自引:0,他引:2  
为了解Na2SO4和NaCl组成的复合盐对小麦萌发期的胁迫效应,选择5个耐盐性不同的春小麦品种进行复合盐胁迫处理,研究在不同浓度复合盐胁迫下,春小麦品种在发芽势、发芽率、苗高、根数、主根长和苗鲜重等指标上的差异,并采用多重比较和回归分析筛选最适复合盐萌发期处理浓度。结果表明,随着复合盐各盐分浓度升高,小麦萌发期各指标的相对耐盐系数急剧下降,且发芽势、发芽率、苗高、主根长和苗鲜重在不同浓度处理间差异极显著;但复合盐对小麦根数的影响较小,在低盐浓度下差异不显著。在Na2SO4浓度为0.05mol.L-1、NaCl浓度为0.1mol.L-1时,5个品种的发芽率、苗鲜重、苗高的相对耐盐系数在50%左右,发芽势和主根长趋近于30%,同时种子保持较高的活力,可以作为小麦萌发期耐盐鉴定的适宜复合盐胁迫浓度。  相似文献   

5.
Sarcophine-diol (SD) is a semi-synthetic derivative of sarcophine with a significant chemopreventive effect against non-melanoma skin cancer both in vitro and in vivo. Recently, we have studied the effect of SD on melanoma development using the mouse melanoma B16F10 cell line. In this study, our findings show that SD suppresses cell multiplication and diminishes membrane permeability for ethidium bromide (EB), a model marker used to measure cell permeability for Ca2+ ions. SD also decreases protein levels of COX-2, and increases degradation of phospholipases PLA2 and PLCγ1 and diminishes enzymatic activity of the Ca2+-dependent cPLA2. This lower membrane permeability for Ca2+-ions, associated with SD, is most likely due to the diminished content of lysophosphosphatidylcholine (lysoPC) within cell membranes caused by the effect of SD on PLA2. The decrease in diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) due to inhibition of PLCγ1, leads to the downregulation of Ca2+-dependent processes within the cell and also inhibits the formation of tumors. These findings support our previous data suggesting that SD may have significant potential in the treatment of melanoma.  相似文献   

6.
Oregano is one of the most important spices, is used all over the world, and includes many species. One of the most important commercially grown species is Origanum vulgare ssp. hirtum (Link) Ietsw (syn.: O. heracleoticum.), which is endemic to the Mediterranean area. O. vulgare ssp. hirtum is a crop species which is well adapted to both dry land conditions and calcareous soils. The objectives of this study were to determine the effects of foliar Ca2+ and Mg2+ applications on growth, yield, essential oil content, and essential oil yield of oregano. Five treatments (0, 0.5% Ca, 1% Ca, 1% Mg, and 2% Mg) were used, and the experiment was repeated at two locations over two growth periods (2005 and 2006) in northern Greece in a sandy loam and sandy clay soil. Foliar applications with Ca2+ and Mg2+ increased the Ca2+ and Mg2+ concentration of the leaves. Ca2+ and Mg2+ applications affected plant height as the plants were shorter in the control treatment and increased with Ca2+ and Mg2+ applications by an average of 10% during the 2-year period and at the both locations compared with the control. Also, Ca2+ and Mg2+ applications increased the number of stems per plant by an average of 23% in both years and at both locations. Chlorophyll concentration was affected by Ca2+ and Mg2+ applications and subsequently increased an average of 23% with Ca2+ and 38% with Mg2+ compared with the control. Applications of Ca2+ and Mg2+ decreased the number of days required for oregano plants to flower by an average of 3–4 days compared with the control. Dry matter yield also increased 22% with Ca2+ and Mg2+ during the 2-year study and at both locations compared with the control treatment. In addition, the Ca2+ and Mg2+ applications affected the essential oil yield, but they did not affect the essential oil content. These results show that Ca2+ and Mg2+ applications can affect the growth and yield of oregano, especially when the plant is grown in acid soils. However, the physiological basis of this effect remains unknown.  相似文献   

7.
为了解水杨酸(SA)对Hg2+胁迫小麦幼苗生长的缓解作用,以小麦品种豫麦58号为材料,采用室内水培法分析了在Hg2+胁迫下小麦幼苗经不同浓度SA处理后的生长及生理变化。结果表明,外施SA能显著提高Hg2+胁迫下小麦幼苗的根长、株高、单株鲜重,叶片叶绿素、脯氨酸和可溶性蛋白含量,以及抗氧化酶活性和根系活力(P0.05),极显著降低丙二醛含量与超氧阴离子产生速率(P0.01)。说明外施SA可通过提高小麦幼苗可溶性蛋白和脯氨酸含量及抗氧化酶活性来维持细胞膜的稳定性,降低膜脂过氧化伤害程度,从而缓解了Hg2+胁迫对幼苗生长的抑制作用,其中以40mg·L-1 SA缓解效果最好。  相似文献   

8.
Calcium ions(Ca2+) act as an intracellular second messenger and affect nearly all aspects of cellular life. They are functioned by interacting with polar auxin transport, and the negative phototropism of plant roots is caused by the transport of auxin from the irradiated side to the shaded side of the roots. To clarify the role of calcium signaling in the modulation of rice root negative phototropism, as well as the relationship between polar auxin transport and calcium signaling, calcium signaling reagents were used to treat rice seminal roots which were cultivated in hydroculture and unilaterally illuminated at an intensity of 100–200 μmol/(m2·s) for 24 h. Negative phototropism curvature and growth rate of rice roots were both promoted by exogenous CaCl2 lower than 100 μmol/L, but inhibited by calcium channel blockers(verapamil and LaCl3), calcineurin inhibitor(chlorpromazine, CPZ), and polar auxin transport inhibitor(N-1-naphthylphthalamic acid, NPA). Roots stopped growing and negative phototropism disappeared when the concentrations increased to 100 μmol/L verapamil, 12.500 μmol/L LaCl3, 60 μmol/L CPZ, and 6 μmol/L NPA. Moreover, 100 μmol/L CaCl2 could relieve the inhibition of LaCl3, verapamil and NPA. The enhanced negative phototropism curvature was caused by the transportation of more auxin from the irradiated side to the shaded side in the presence of exogenous Ca2+. Calcium signaling plays a key role as a second messenger in the process of light signal regulation of rice root growth and negative phototropism.  相似文献   

9.
The effects of putrescine on improving rice growth under aluminum(Al) toxicity conditions have been previously demonstrated, however, the underlying mechanism remains unclear. In this study, treatment with 50 μmol/L Al significantly decreased rice root growth and whole rice dry weight, inhibited Ca~(2+) uptake, decreased ATP synthesis, and increased Al, H_2O_2 and malondialdehyde(MDA) contents, whereas the application of putrescine mitigated these negative effects. Putrescine increased root growth and total dry weight of rice, reduced total Al content, decreased H_2O_2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase, peroxidase, catalase and glutathione S-transferase) activities, increased Ca~(2+) uptake and energy production. Proteomic analyses using data-independent acquisition successfully identified 7 934 proteins, and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected. From the results of the proteomic and biochemical analyses, we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots, increased pectin methylation, decreased pectin content and apoplastic Al deposition in rice roots. Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membrane integrity and normal cell proliferation. These findings improve our understanding of how putrescine affects the rice response to Al toxicity, which will facilitate further studies on environmental protection, crop safety, innovations in rice performance and real-world production.  相似文献   

10.
Severe acidifications in acid sulfate soils (ASSs) have occurred worldwide due to sulfuric acidity, which requires sustainable measures for their reclamation. Accordingly, an incubation study was conducted with the topsoil of two different ASSs (Cheringa and Badarkhali) to evaluate the effects of basic slag (BS; size <1 mm, pH 9.6, Ca 20.8%, Mg 9.8%, etc.), on reduction of acidity and changes in exchangeable cations. It is noted that BS is a byproduct of steel industry in Bangladesh and can be collected almost free of charge. These soils received BS at the rate of 0 (T0), 11 (T1), 22 (T2) and 33 (T3) t ha−1 under various moisture regimes (saturated condition M1,, i.e., 100% moisture content, wetting–drying cycles of 100 and 50% moisture M2, and moisture at field condition M3, i.e., 50%). The impacts of these treatments on some selected parameters in these soils were studied within 180 days of incubation. The application of BS was found to increase the pH of soils from 3.6 to 5.1 for Cheringa, 3.9 to 5.2 for Badarkhali soils at the end of incubation. These increments were more striking with the highest doses of BS under saturated moisture conditions in both of the soils. The ECe of the soils was not much influenced by the application of BS regardless of time. The treatments exerted significant (P ≤ 0.05) effects on exchangeable cations in different periods of incubation. The striking changes were recorded for the rate of increments of Ca2+ and Mg2+, which were about 2–3 times higher for Ca and more than 2 times higher for Mg2+ compared with the control after 180 days of incubation. These results suggest that the application of BS not only increased the Ca2+ to the higher amount than that of the increment of Mg2+ in the soils, but also improved one of the important criteria of Ca2+ and Mg2+ ratio in the soils.  相似文献   

11.
Micropropagated potato plantlets (Solanum tuberosum cvs Acadia Russet, Red Gold, Red Pontiac, and Russet Burbank) were used to test the effects of exposure to ultra violet rays (UV) or inclusion of vitamin D3 (cholecalciferol) in the test solution on plantlet calcium (Ca) uptake. Ca uptake was determined by measuring shoot tissue45Ca2+ concentration inex vitro plantlets placed into test solutions containing radiolabelled calcium (45CaCl2). Shoot tissue45Ca2+ concentration was very significantly increased in all cultivars exposed for 24 h to UV treatment compared with control plantlets. This increase in shoot45Ca2+ concentration was similar (three cultivars) or greater (one cultivar) than that caused by 10 ing L?1 vitamin D1 in the test solution. When plantlets were exposed to UV, then placed for 24 h in the dark, significantly greater shoot45Ca2+ concentrations occurred compared with plantlets tested immediately following treatment. This suggests that a change in the UV-elicited cellular product occurred during the dark interval that promoted more Ca uptake into plantlets.  相似文献   

12.
《Field Crops Research》2005,91(2-3):345-354
The performance of selected salt-tolerant genotypes of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], derived from field and in vitro assessment methods, was evaluated under greenhouse and field conditions. Eight durum wheat genotypes comprising three salt-tolerant genotypes and one salt-sensitive genotype selected from each of the methods were used. This study was conducted under both saline and non-saline field conditions as well as under greenhouse condition with salinized solution culture at 0 mM (control), 75 and 150 mM NaCl (concentrations) using supplemental Ca2+. Days to heading, days to maturity, plant height, number of grains per spike, grain weight per spike, 1000 grain weight, number of spikes per m2, grain yield and harvest index were recorded in the field experiments. Plant dry weight, Na+, K+ and Ca2+ accumulated in the hydroponically grown seedlings were measured 20 days after salinity treatments. In spite of the smaller range of genotypes used by the in vitro screening method, tolerant genotypes screened by the in vitro method (ITGs) performed comparably with those of the field-derived tolerant genotypes (FTGs) for grain yield under saline field conditions. Field salinity significantly reduced (P < 0.01) means of all traits averaged on eight tested genotypes. In vitro salt-tolerant genotypes Dipper-6 and Prion-1 produced the highest dry weight and K+/Na+ ratio under salt stress conditions (150 mM NaCl) in the greenhouse. Although dry matter correlated with the grain yield (R2 = 0.37), the regression coefficient was higher for shoot K+/Na+ ratio (R2 = 0.44). Dipper-6 (ITG) and Prion-1 (ITG) genotypes have been ranked superior while Massara-1 (ISG) was inferior for salt tolerance in the regression analysis. However, based on grain yield reduction Ajaia/Hora/Jro/3/Gan (FTG) and PI40100 (ITG) were the most tolerant having 58% and 60% reduction, respectively.  相似文献   

13.
外源钙对盐胁迫下玉米幼苗不同器官离子含量的影响   总被引:2,自引:0,他引:2  
以郑单958为试验材料,采用水培法研究盐胁迫下外源钙对玉米幼苗根、生长叶、成熟叶叶鞘和叶片生长的影响及K+、Na+、Mg2+、Ca2+含量,探讨盐胁迫下外源钙对玉米幼苗不同器官离子含量的影响。结果表明,外源钙可缓解盐胁迫对玉米幼苗生长的抑制作用,促进干物质积累及根冠比的增加。外源钙可明显降低根系对Na+的吸收量,减少Na+向地上部的运输量;增加对K+、Mg2+、Ca2+的吸收量和运输量;降低盐胁迫下玉米幼苗各器官Na+/Ca2+值、Na+/K+值,表明Ca2+可改善玉米幼苗体内的离子平衡,缓解盐胁迫造成的伤害。  相似文献   

14.
玉米自交系耐盐种质的筛选及耐盐性评价   总被引:1,自引:1,他引:0  
在0+0、2.5+2.5、5+5和7.5+7.5 mmol/L(Na2CO3+NaHCO3)盐浓度胁迫下,对118份玉米自交系芽期、苗期的耐盐性差异进行比较,以主要农艺性状综合表现为依据筛选耐盐种质。各指标受盐害影响程度大小顺序为株高>芽势>叶长>根长>地上含水量>地下含水量>叶宽>芽率>须根数>根冠比>茎粗>根粗;当盐胁迫溶液为7.5 mmol/LNa2CO3+7.5 mmol/L NaHCO3时,对玉米自交系影响差异显著。综合各个指标的盐害率对118份玉米自交系进行评价和排序,5个耐盐性强的自交系品种为DL、A71、PHB1M、A92和WM33;对盐敏感的5个品种为06NY-25、Mo17、郑32、南引26和农M1。  相似文献   

15.
Summary Liquid scintillation counting (LSC) was used to screen six potato cultivars (Alpha, Bintje, Green Mountain, Kennebec, Russet Burbank, and Shepody) and two wild species(S. microdontum andS. kurtzianum) for ability to take up the tracer45Ca2+ from treatment solutions containing high (15 mM) or low (5 mM) Ca2+ levels. In vitro potato micropropagation, microtuberization, and tissue calcium content, determined by flame atomic absorption spectrophotometry (FAAS), were compared for the six cultivars when Murashige-Skoog basal medium Ca2+ level was increased from 3, to 5 or 15 mM. All aspects of growth were improved when medium Ca2+ level was 15 mM. Microtuber induction occurred earlier, leading to improved yield (19–31%), and microtuber tissue Ca2+ concentration was greater (38–226%). Cv. Bintje was the most efficient genotype at accumulating Ca2+ from treatment solutions or growth media containing high or low Ca2+ levels. It could be identified as a calcium-packer using either LSC or FAAS screening.  相似文献   

16.
为明确外源硝态氮对高铵胁迫下小麦幼苗生长的影响及其生化机理,采用温室水培的方式,以豫麦49(耐高铵品种)和鲁麦15(高铵敏感型品种)为材料,研究了外源硝态氮对高铵胁迫下小麦幼苗形态、激素含量和抗氧化系统的影响。结果表明,高铵胁迫条件下,外源硝态氮显著增加两个小麦品种株高、根长、干重,其中鲁麦15的地上部干重增加量高于豫麦49,而根系干重增加量则表现为豫麦49高于鲁麦15。高铵胁迫下,两个小麦品种植株的IAA、CTK含量、IAA/CTK显著低于对照;外源硝态氮处理5 d后,豫麦49地上部和根系IAA含量、根系CTK含量显著增加,恢复至对照水平;鲁麦15植株虽亦表现显著增加,但仍低于对照。另外,外源硝态氮对高铵胁迫下两个小麦品种地上部和根系的O■释放速率、SOD和POD活性及MDA含量没有显著影响。综上,外源硝态氮缓解小麦幼苗生长高铵胁迫的原因可能是通过增加IAA和CTK合成和转运,影响IAA和CTK之间的平衡,进而达到缓解效果。品种间比较,耐铵型品种豫麦49缓解作用可能源于对地上部和根系IAA含量以及根系CTK含量的协同调控;而高铵敏感型品种鲁麦15的缓解作用可能主要源于对地上部IAA含量的调控。  相似文献   

17.
This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl and/or HCO3). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e.g., channelopaties).  相似文献   

18.
Wheat (Triticum aestivum L.) grain Zn data from six open-top chamber experiments performed in south-west Sweden were combined to study the relationship between Zn accumulation and grain yield, grain protein, and yield components. Treatments included, in addition to open-top chamber controls, elevated CO2, elevated O3, combined CO2 and O3 exposure, combined elevated CO2 and supplemental irrigation, supplemental irrigation, and ambient air comparison plots. The grain Zn concentration was strongly correlated with grain protein (R2 = 0.90) over the range of the experimental treatments, representing non-soil factors. A significant yield dilution effect was found for Zn. For a 10% increase in grain yield, Zn yield was increased by 6.8% on average. Effects on Zn yield correlated strongly with effects on grain protein yield, with a slope close to unity, showing that yield dilution effects for grain Zn and grain protein were similar. Treatment effects on grain Zn concentration were related to effects on grain weight (P < 0.01) and grain number (P < 0.05), but not to harvest index. It was concluded that yield stimulation caused by rising CO2 concentrations is likely to lead to reduced Zn concentrations of wheat grain, thus reducing the nutritional quality.  相似文献   

19.
For three weeks after emergence, micro-swards of Lolium rigidum were defoliated to a height and at a frequency which represented a range of set stocking rates of less than, similar to, and more than 7–8 sheep/ha as based on the results of Greenwood and Arnold (6) and referred to as D1, D2 and D3 respectively. The effects of these defoliation regimes on the growth and development of emergent swards were evaluated according to their effect on increments of DM from plant parts, rate of appearance of leaves and tillers, concentration of soluble carbohydrates, and on the uptake and concentration of inorganic nutrients. Defoliation began five days after emergence, when the dry weight of the shoot was 3g/m2. After 20 days of treatment, 6±7 g/m2 of DM had been removed from D1, 5±5 g/m2 from D2 and 51 g/m2 from D3; and the dry weight of shoot remaining was 13, 7 and 4±5 g/m2 on D1, D2 and D3 respectively. The effect of defoliation on dry weight of plant parts increased in severity in the order leaf 1, stem+sheaths, leaf 2, roots, leaf 3, tiller 1, tiller 2, leaf 4. Average relative growth rate of the sward was reduced from 17% per day on D1 to 13% per day on D3. There was no necrosis of root tissue. Emergence of the later leaves and of the tillers was retarded by up to three days by more frequent defoliation. Alcohol-soluble carbohydrates in the root fell from over 6% to about 1±5% on all treatments. Uptake of N. P and K was limited by increasing intensity of defoliation and because concentrations of those elements were not greatly affected, the limitation could be ascribed mainly to the effects of defoliation on plant size. The plausibility of the technique for the experimental simulation of grazing of emergent annual grass swards in Western Australia is discussed. It is concluded that for set-stocking rates of less than about 12 sheep/ha, grazing, while reducing DM production just after emergence, is unlikely to produce severe physiological stresses in the sward.  相似文献   

20.
Failures in agricultural development in parts of West Africa may have been caused by the inability of the farmers to develop the abundant inland valleys for cultivation of such crops like rice, using appropriate water management systems. An inland valley in southeastern Nigeria was used to evaluate the influence of sawah and non-sawah water management using inorganic and organic soil amendments on the soil chemical properties and rice grain yield. Soil chemical properties tested were soil organic carbon, total nitrogen, pH, exchangeable K+, Ca2+ and Mg2+. Others were CEC, percent base saturation and exchangeable acidity while the grain yield of rice was also measured. The soils are loose, low in pH and poor in plant nutrient elements. In spite of that, the sawah-managed system was able to improve the pH of the soil by raising it slightly both in the first and second year of planting. Generally, essential plant nutrients such as exchangeable K+, Ca2+ and Mg2+, including fertility index like the CEC, were improved within sawah management within the period. Also, rice grain yield increased significantly (5.62 and 6.25 tons/ha in the first year and 5.32 and 6.53 tons/ha in the second year for non-sawah and sawah, respectively) with sawah system such that about 11 and 23% yield increases were obtained in sawah over the non-sawah in the two years, respectively. Although organic carbon can be used to explain the variation in total grain yield in the first year, it was the CEC that explained the total grain yield in the second year. The study revealed the superiority of sawah over non-sawah in the production of lowland rice in an inland valley in southeastern Nigeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号