共查询到17条相似文献,搜索用时 62 毫秒
1.
为了探索动压型机械密封微间隙气液固流动特性及密封性能,建立了间隙润滑膜气液固多相流模型,对间隙流动进行数值模拟,分析槽型参数和工况参数对流动特性及密封性能的影响.研究表明:槽宽比、螺旋角和转速的增大以及槽深的减小均会使润滑膜空化区域增大;随着槽宽比、槽径比和槽深的增大,润滑膜开启力先增大后减小,最佳槽型参数值分别是槽宽比0.3~0.6、槽径比0.7~0.8、槽深6~10μm(转速高、槽深取大值),较小的螺旋角能获得较大开启力;在所研究参数内密封主要为负泄漏,转速、槽径比的增大和螺旋角的减小均会使泄漏量绝对值增大,而槽深、槽宽比的增大使泄漏量绝对值先增大后减小;总体上固体颗粒主要聚集在槽堰区及坝区内侧,槽径比减小和螺旋角增大会使固体颗粒向槽堰区聚集,易造成螺旋槽堵塞失效. 相似文献
2.
水力空化是流体机械和液压系统等旋转机械中存在的一种流体力学现象,旋转机械使用的机械密封凭借动压效应在密封端面间形成厚度为微米级别的润滑膜,而微尺度液膜产生的空化现象对机械密封的性能有着重要的影响,端面液膜空化问题成了机械密封研究的热点问题之一.为了更好地把握研究方向,从空化机理、试验研究和理论研究等3个方面分析了液膜润滑机械密封空化问题的研究现状,综合分析了宏观空化、微观空化、空化边界条件和空化算法等问题的研究进展.在对相关研究进行总结的基础上,对未来机械密封空化的研究方向进行了展望:应着重从空化理论模型、数值仿真技术、空化控制新技术和有效测量新技术等方面深入开展机械密封空化研究. 相似文献
3.
为了研究槽底表面粗糙度对干气密封性能的影响,建立沿密封端面径向分布为正弦曲线的槽底表面粗糙度模型,考察在单个取样长度Lr内正弦波波长λ对密封性能的影响,确定了正弦波波数n=10,即波长λ=0.08 μm,采用近似解析法求解密封端面间隙的气膜压力分布,得到了不同槽深和不同膜厚下槽底表面粗糙度对干气密封端面开启力和泄漏率的影响规律.结果表明:针对所研究的工况,与光滑面相比,槽底面粗糙度Ra=0.4 μm时,开启力的最大相对误差(绝对值)为0.12%,泄漏率的最大相对误差(绝对值)0.31%;槽底表面粗糙度Ra=0.8 μm时,开启力的最大相对误差(绝对值)为0.50%,泄漏率的最大相对误差(绝对值)1.26%.这说明,一般工况下,槽底表面粗糙度Ra≤0.8 μm时,可忽略槽底表面粗糙度对干气密封性能的影响.而在非槽区气膜厚度h0<2 μm的运行工况下,建议将槽底表面粗糙度Ra降低到0.4 μm以下. 相似文献
4.
为了研究表面粗糙度及空化效应对压裂泵柱塞密封副密封性能的影响,基于稳态Reynolds方程,建立了粗糙峰和空化效应影响下组合密封的弹流润滑数值模型.在数值模拟基础上,采用有限体积法求解稳态Reynolds方程,研究了密封副在表面粗糙度影响下的油膜厚度、油膜压力、油膜流速分布规律,以及不同的往复速度和滑环表面粗糙度对密封性能的影响.结果表明,外行程流体动压效应微弱,油膜在空气侧附近会出现空化现象;较高的往复速度有利于减小泄漏量及摩擦阻力;滑环表面粗糙度从0.8μm增加到1.8μm时,净泄漏量与外行程摩擦力分别升高了180.4%和11.17%.因此,在工作过程中应设置较高的往复速度和使用较低粗糙度的滑环以提高密封性能. 相似文献
5.
激光表面织构机械密封润滑特性的试验研究 总被引:2,自引:0,他引:2
采用调Q半导体泵浦YAG激光器,利用"单脉冲同点间隔多次"激光加工工艺在密封环端面加工具有环形阵列分布的微凹坑织构.在机械密封计算机辅助试验装置上,进行了激光表面织构机械密封与普通机械密封的试样的对比摩擦性能试验,研究了激光表面织构技术在不同的密封介质压力和转速等工况下对机械密封的润滑特性的影响.结果表明:在试验范围内,激光表面织构技术对于改善机械密封润滑特性的作用主要受密封介质压力的影响,转速的影响则相对较小.与无织构机械密封相比,在较低密封介质压力的条件下(0.2 MPa),激光表面织构机械密封能显著改善润滑特性,摩擦转矩最大可减小60%,转速对摩擦扭矩的影响不大.在较高密封介质压力的条件下(0.8 MPa),转速对摩擦扭矩的影响起到较大的作用,只有当转速达到一临界值时激光表面织构机械密封才能够起到改善润滑的作用,且作用较小. 相似文献
6.
研究机械加工表面粗糙度的目的就是为了掌握机械加工中各种工艺因素对加工表面粗糙度影响的规律,以便运用这些规律来控制加工过程。 相似文献
7.
对全膜及乏油条件下纵向粗糙度滚子副弹流润滑问题进行了求解。结果表明,滚子接触副中部与端部的润滑特性不同,由于端部效应的存在,其端部油膜厚度远低于中部。表面粗糙度会引起油膜厚度及压力的波动,在纯滚动条件下,油膜波动的波长等于粗糙度的波长,而幅值大于粗糙度的幅值。表面粗糙度会降低油膜厚度,尤其在乏油润滑条件下。供油膜厚越小,滚子接触副越容易乏油。在一定供油量下,表面粗糙度的幅值越大,波长越小,对滚子副的润滑越不利。 相似文献
8.
基于动网格技术的端面造型机械密封性能 总被引:1,自引:0,他引:1
利用Fluent软件中的动网格技术,将其应用于机械密封间隙内流场数值模拟中,以有效解决模拟过程中液膜厚度无法预知的问题,获得更加贴近实际的内流场特性,并在此基础上对普通机械密封、微孔端面机械密封、孔槽耦合端面机械密封进行内流场模拟研究,得到3种方案下压力分布、剪切应力分布和泄漏量,对模拟结果进行比较分析.结果表明:动网格技术在机械密封内流场模拟中的应用是可行的,能得到更好的效果;微孔和螺旋泵送槽都能够产生动压效应,其中由于微孔的动压效应产生的高压区出现在渐缩截面处,槽的动压效应产生的高压区主要出现在槽末端台阶处;与普通机械密封相比,微孔端面机械密封能够产生动压效应,减轻密封件的摩擦磨损,但防泄漏性能不佳;孔槽耦合端面机械密封运行时不仅剪切应力小,而且能有效抵抗压差流、降低泄漏量,具备优异的密封润滑性能,是获得零泄漏非接触高性能的可行途径. 相似文献
9.
为深入研究密封介质为非牛顿流体的螺旋槽上游泵送机械密封性能,以幂律流体为研究对象,基于Muijderman推导牛顿流体润滑轴承的端面压力分布表达式,把幂律流体二维定常流动雷诺方程和流量方程分别替换牛顿流体的表达形式,获得了密封端面流场的压力分布表达式,进而得到密封开启力、泄漏率等性能参数.将解析所得结果与采用Fluent模拟结果进行比较,两者数据吻合.再基于近似解析法,分别分析了稠度系数m和流性指数n对密封性能的影响,结果表明,密封开启力随流性指数n和稠度系数m的增大而增大.对于泄漏率而言,当密封胀塑性流体时,流性指数n和稠度系数m几乎没有影响.当密封假塑性流体时,处于较小膜厚时受稠度系数m和流性指数n的影响甚微,但处于较大膜厚时随流性指数n和稠度系数m增大而变大. 相似文献
10.
笔者围绕不同槽型结构参数对液膜机械密封汽化特性的影响展开研究,综合应用最优传质系数和遗传算法,最终得到最优螺旋槽槽深、槽堰比、槽径比、螺旋角范围。 相似文献
11.
激光表面跨尺度织构化机械密封摩擦性能 总被引:3,自引:0,他引:3
采用声光调Q的半导体泵浦Nd:YAG激光器,利用"单脉冲同点间隔多次"激光加工工艺在碳化硅机械密封环端面进行跨尺度织构化处理,制备微凹坑织构和宏观上游泵送槽织构,用表面形貌三维测量仪测量激光加工后的试样.在机械密封计算机辅助试验台上,进行了激光表面跨尺度织构机械密封与无织构机械密封的摩擦性能对比试验,研究了跨尺度表面织构在不同的密封介质压力和转速等工况下对机械密封摩擦转矩的影响.结果表明:激光表面织构化技术能在密封环表面进行微凹坑型及微凹槽型织构的跨尺度加工.在试验的工况参数范围内,无论是在低压低速,还是在高压高速工况下,激光表面跨尺度织构均可以显著地改善机械密封的摩擦性能.与无织构机械密封相比,激光表面跨尺度织构机械密封的摩擦转矩最大可减小65%,并且运转相对较为稳定,受密封介质压力和转速的影响相对较小,这是由于所制备的跨尺度表面织构起到了改善密封端面间润滑状况的作用. 相似文献
12.
SiC机械密封环表面微织构激光加工工艺 总被引:2,自引:0,他引:2
采用声光调Q二极管泵浦Nd:YAG激光器, 利用“单脉冲同点间隔多次”激光加工工艺, 对碳化硅机械密封试样端面进行激光表面微织构的加工工艺试验研究.采用Wyko NT1100表面形貌三维测量仪测量了微织构的几何形貌参数,分析了泵浦电流、脉冲重复频率、脉冲重复次数和扫描速度等激光加工工艺参数对微凹腔和微凹槽织构的几何形貌参数与加工质量的影响. 结果表明, 泵浦电流和脉冲重复次数对微凹腔的几何形貌参数与加工质量影响较大,而重复频率的影响则相对较小;泵浦电流、扫描速度和重复频率对微凹槽的加工质量均有较大影响. 通过优化激光加工工艺参数组合, 可以加工出较优的微观几何形貌. 加工微凹腔较优的工艺参数范围:泵浦电流为14~16 A,脉冲重复次数为1~10次; 加工微凹槽的较优工艺参数范围:泵浦电流为14~16 A,重复频率为1 500~2 500 Hz,扫描速度为8~25 mm/s. 相似文献
13.
为了找出更有效的优化方法,在考虑空化模型的基础上,以螺旋槽的几何参数(槽深h、螺旋角α、槽径宽径比β以及槽区宽度比γ)为设计变量,以泄漏量为优化目标,采用均匀试验设计法设计了50组机械密封端面槽型几何参数值,并利用CFD方法计算目标函数值,从而建立端面槽型几何参数和泄漏量的回归模型.运用Matlab软件绘制等值云图,利用响应面法分析端面槽型几何参数槽深、螺旋角、槽径宽径比以及槽区宽度比之间的交互作用对泄漏量的影响,并对机械密封微间隙内流场进行数值模拟验证,从而得到端面参数的最佳组合.研究表明:采用响应面法对上游泵送机械密封进行优化可行;螺旋槽的槽深h、螺旋角α、槽径宽径比β、槽区宽度比γ分别在6~12 μm,16°~20°,0.35~0.55和0.45~0.6取值时,能够获得更好的密封性能. 相似文献
14.
动压机械密封动力槽的优化及换热器面积的确定 总被引:1,自引:0,他引:1
针对高温、高压泵的机械密封端面容易出现磨损或烧损的问题,分析了热流体动压机械密封的工作原理;在高温、高压泵上采用了热流体动压机械密封,以及使用API682 32系统作为密封辅助冷却方案.对动压机械密封的端面动力槽作了优化设计;对密封系统的换热器进行了设计计算,使得密封能在较为理想的工作温度下工作.结果表明,在高温热水工况下,冲洗水流量及温度满足设计要求时,端面圆弧槽的密封效果最好,最大使用寿命可达8000h;液膜的承载能力随着密封端面圆弧槽槽数的增加而增加,受槽深的影响比较小;换热面积为0.50m^2的换热器是合理的,并应尽量使用较大换热面积的换热器,使进入密封腔的冲洗水温度低于100℃. 相似文献
15.
为了研究上游泵送机械密封润滑膜内部微小颗粒的分布规律及其对密封性能的影响,建立密封动、静环间液膜三维几何模型和数值模拟计算模型.基于两相流体的连续介质理论,利用Mixture模型对液膜内的两相流动进行数值模拟,分析了微尺度液膜内颗粒相的分布特点、进口颗粒体积分数对颗粒分布的影响以及由此引起的密封性能变化.研究表明:微小颗粒相主要存在于螺旋槽的槽根半径处及靠近螺旋槽的密封坝处,分布特征随着颗粒进口体积分数的增大而逐渐明显,这可能是上游泵送机械密封易出现螺旋槽堵塞的原因;在所研究的参数范围内,颗粒相的存在使液膜开启力增大且开启力和端面摩擦扭矩随着颗粒进口体积分数的增大而增大. 相似文献
16.
针对螺旋槽上游泵送机械密封的研究和设计过程中,利用未考虑修正因素的近似解析法所得结果与试验结果偏差进行比较,为准确、高效地解析计算螺旋槽上游泵送机械密封的性能,考虑液体进入螺旋槽时会产生压力损失的“端部效应”,对螺旋槽根处的压力进行了修正,获得了修正后的液膜压力分布近似解析表达式和密封的开启力.并将开启力与未修正的近似解析计算结果、数值模拟结果和试验结果进行了比较.结果表明:修正后的近似解析计算结果与数值模拟结果和试验结果基本吻合,当密封处于低压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为62%,与试验结果的平均相对误差为86%,最大相对误差为155%;当密封处于高压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为25%.研究结果可为上游泵送机械密封等液膜润滑机械密封的研究、设计和应用提供参考. 相似文献
17.
在考虑水的饱和蒸汽压力与温度的关系、黏温效应以及牛顿流体内摩擦效应基础上,建立了涉及润滑膜温度的上游泵送机械密封微间隙气液固多相流动计算模型,采用Fluent中Mixture模型和DPM模型进行了数值模拟,研究了介质温度对密封润滑膜固体颗粒运动、沉积分布、沉积率及密封性能的影响规律.研究表明:介质温度升高,外槽根高压区压力减小,吸入颗粒数量增多且进入槽区的颗粒更易向外槽根和坝区运动,进入膜区的颗粒多数在较大离心力和压力梯度力的作用下从外径侧逃逸,颗粒沉积区域向外槽根收缩,沉积率降低,转速较低时颗粒易在外槽根附近槽区沉积且介质温度越低沉积区域越向内槽根拓展,转速较高时则易在外槽根及坝区沉积;润滑膜开启力和摩擦扭矩随介质温度增大而减小,摩擦扭矩随转速升高而增大且对介质温度更敏感,泄漏量随介质温度的升高而向正泄漏方向移动. 相似文献