首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同原料生物炭理化性质的对比分析   总被引:2,自引:0,他引:2  
为研究不同原料生物炭理化性质的差异,以苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭、污泥生物炭和褐煤生物炭6种生物炭为测试材料,利用傅里叶红外光谱仪和Boehm滴定法对生物炭表面官能团进行定性和定量分析,用电子扫描显微镜观察生物炭表面形貌,并测定生物炭的pH值、有机碳含量和阳离子交换量等基本理化性质。结果表明,除污泥生物炭呈弱酸性外(pH=6.76),其他生物炭均呈碱性(pH=8.49~9.96)。苜蓿秸秆生物炭有机碳含量最高(588.43 g·kg-1),污泥生物炭最低(168.17 g·kg-1)。阳离子交换量大小排序为,苜蓿秸秆生物炭、棉花秸秆生物炭 > 葡萄藤生物炭 > 小麦秸秆生物炭 > 污泥生物炭 > 褐煤生物炭。FTIR图谱表征显示,生物炭表面存在芳香烃类和含氧基团,生物炭的结构以芳环骨架为主。苜蓿生物炭表面官能团总数最多,污泥生物炭最少。扫描电镜(SEM)结果表明,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭表面有明显孔隙结构,褐煤生物炭和污泥生物炭表面并无明显的孔隙结构。综上,苜蓿秸秆生物炭、小麦秸秆生物炭、棉花秸秆生物炭、葡萄藤生物炭适用农田土壤改良与培肥,褐煤生物炭和污泥生物炭可尝试用于污染土壤的修复,同时污泥生物炭可用于盐碱土的改良。  相似文献   

2.
以蒙古栎人工林新鲜地表可燃物为原料,制备生物炭,研究其产率、元素质量分数、碳组分以及化学性质、速效养分、官能团类型。采用单因素方差分析、最小显著差异法(LSD)分析各指标组间差异性,为森林可燃物资源再利用提供新途径。结果表明:生物炭产率、去灰分净产率随温度升高而下降;但灰分质量分数、氢元素质量分数、氧元素质量分数、稳定性碳质量分数、pH则随温度升高而上升;不同炭化时间时,生物炭碳质量分数、不溶性碳质量分数、铵氮质量分数表现出不同的变化趋势。氮质量分数、阳离子交换量、硝氮质量分数、速效磷质量分数随温度升高呈先上升后下降趋势。与原生物质材料相比,生物炭电导率显著降低,但其随温度升高表现出缓慢上升趋势。生物炭表面的O—H基团随温度升高而降低,而C—H、—COO、Si—O—Si基团随温度升高逐渐消失,C—O—C、C=C基团随热解温度升高呈先升高后降低趋势。制备过程中的不同温度、炭化时间均影响蒙古栎新鲜地表可燃物生物炭的理化性质,制备温度、炭化时间对各性质及官能团质量分数的影响不同,制备温度对生物炭理化性质影响较炭化时间更明显。  相似文献   

3.
生物炭制备及其对土壤理化性质影响的研究进展   总被引:7,自引:0,他引:7  
生物炭作为一种新型的土壤改良剂和吸附剂,近年来成为农业、环境、能源等领域的关注热点。生物炭是通过有机物质在缺氧的条件下热解形成的,不同的原料及生产条件都会对生物炭的性质产生影响。生物炭能够能够改良土壤,改善土壤的容重、总孔隙度和保水性,还可以调节土壤的酸碱度,增强土壤阳离子交换量(CEC),提高土壤养分。系统总结了生物炭生产方法、理化特性及其对土壤理化性质的影响,为优选生物炭、提升生物炭产品附加值、促进土壤改良提供理论支撑。  相似文献   

4.
不同裂解温度对梨树枝条生物炭理化性质的影响   总被引:1,自引:0,他引:1  
[目的]本文旨在研究梨树枝条在不同温度下裂解所得生物炭的理化性质差异,确定适宜的制备生物炭温度范围,为梨树修剪枝条资源化利用提供新的途径。[方法]以粉碎梨树枝条为原料,在惰性气体包围下,在不同裂解温度(300~900℃)下制备生物炭,研究不同裂解温度对生物炭理化性质的影响。[结果]裂解温度由300℃上升到900℃,生物炭产率由61%显著降低到24%(P0.05),p H值由7.3显著上升到11.7(P0.05),生物炭中碳含量增加而氮含量显著降低,钾、钙、镁、硼、铁、铜等元素含量均先升高后保持稳定;阳离子交换量随温度的升高先显著下降后保持稳定。红外光谱分析表明随着裂解温度的升高,枝条内O—H和C—H键断裂,形成难降解的芳香烃类物质;扫描电镜分析表明生物炭孔隙度随着裂解温度升高而增加,温度越高,孔数量越多,比表面积越大,700℃下制备的生物炭比表面积相比300℃增加了50%;同时,比表面积及孔体积也随温度的升高而增加,吸附性增强。[结论]制备枝条生物炭时,将裂解温度设置为500~700℃时,元素含量相差不大,微孔和大孔数量基本达到最高水平,吸附性能达到最佳。  相似文献   

5.
生物炭是土壤修复材料之一,但其理化性质可能会随时间而变化.为探索生物炭在田间逐渐老化中的变化规律,通过对田间老化7 a的生物炭与原新鲜生物炭的综合表征对比分析,探究田间老化作用下生物炭理化性质的变化.结果表明:与新鲜生物炭相比,老化生物炭的C相对含量降低了42.12%,O相对含量增加了70.49%,比表面积、孔容、孔径...  相似文献   

6.
热解材料对生物炭理化性质的影响   总被引:4,自引:1,他引:3  
生物质的热解材料会对其生物炭的物理化学性质产生较大影响,进而影响其田间应用效果。选取四种乔木(橡树、桑树、樟树和松树)、三种草本植物(芦苇、蒿和蕨类)和两种作物秸秆(玉米秆和油菜秆),在同等热解条件下(550 ℃)制备生物炭,对比其理化性质的差异。结果显示,秸秆生物炭的可溶性Cl-和K+含量、EC和CEC均显著高于乔木和草本生物炭,有效磷也呈现类似规律,而可溶性Na+、Ca2+和Mg2+含量以及pH、SO42-、NH4+-N、NO3--N等指标在三类生物炭之间无显著差异。乔木生物炭和草本生物炭之间在各个指标上均无显著差异。这表明,从营养元素、CEC和改良酸性土壤的角度来看,秸秆生物炭比乔木和草本生物炭更适合作为土壤改良剂。  相似文献   

7.
为明确农田常见土壤环境过程对生物炭的老化作用及吸附能力的影响,本研究以水稻秸秆为原材料,分别在300、500℃和700℃下限氧热解制备3种初级生物炭,并将其进行酸洗、氧化、水洗及根系分泌物老化等处理,研究不同环境过程对生物炭理化性质和其对邻苯二甲酸酯(PAEs)吸附能力的影响。结果表明:经强酸、H_2O_2、植物根系分泌物以及水洗等老化处理的生物炭无机组分比例均下降,引起有机组分比例增加,比表面积和总孔体积增大,且老化处理所引起的生物炭性质变化的程度为强酸H_2O_2≈植物根系分泌物水洗。初级和老化生物炭对邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二丁酯(DBP)的等温吸附线均符合Freundlich模型,且对DBP的吸附能力均强于DEP。老化处理显著提高了中高温生物炭(500℃和700℃)对PAEs的吸附,且强酸老化效果显著强于H_2O_2、植物根系分泌物及水等老化处理,这是由于中高温生物炭中高含量无机组分易被酸洗去除并释放一部分有机吸附位点和被堵塞的孔道,增加了PAEs吸附位点的可及性。因此,中高温生物炭对水体和土壤中常见塑化剂具有更强的吸附固定潜力,在使用时需要综合考虑其土壤环境过程和理化性质以及目标污染物,以引导生物炭技术的健康发展。  相似文献   

8.
9.
本文通过研究总结了不同生物质在不同的热解温度下得到的生物质炭的理化性质的变化,以分析热解温度对生物炭理化性质的影响效果。研究结果表明,不同生物质通过热解得到的生物炭的产率随着热解温度的升高而降低,而其pH值、灰分含量以及比表面积随着热解温度的上升而显著增加,说明,热解温度是影响生物炭理化性质变化的主要因素。  相似文献   

10.
不同秸秆生物炭对黄壤理化性质及综合肥力的影响   总被引:1,自引:0,他引:1  
【目的】研究不同秸秆生物炭对黄壤物理、化学性质和生物活性影响的差异,并对添加不同生物炭的黄壤肥力进行综合评价,以期为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以玉米、水稻和油菜秸秆500 ℃炭化得到的生物炭为添加材料,以贵州省地带性黄壤为供试土壤,通过室内培养试验,以未添加生物炭处理为对照,分析比较添加量为1%,2%,4%的玉米、水稻和油菜秸秆生物炭处理黄壤体积质量、pH、养分含量和酶活性的变化,通过相关性分析和模糊数学原理计算不同生物炭处理黄壤的综合肥力水平。【结果】与对照相比,生物炭降低了0~10 cm土层土壤的体积质量,其中0~5 cm土层降幅较大(1.54%~8.46%)。添加生物炭使土壤pH明显增大,其中以添加4%油菜秸秆生物炭处理的pH最大,为7.33。土壤有机质、氮磷钾含量对生物炭类型及添加量的响应不同。与对照相比,不同生物炭处理有机质含量增加了146.80%~445.63%;添加4%油菜秸秆生物炭可以显著提高土壤的碱解N含量,较对照升高了31.23%;有效P、速效K和全N、全P、全K含量均随着生物炭添加量的增加而增大,增幅分别为28.04%~134.58%,19.76%~162.48%,13.85%~112.31%,6.25%~43.75%和10.53%~31.58%。与对照相比,添加生物炭可以显著降低土壤的过氧化氢酶活性,提高脲酶、蔗糖酶和中性磷酸酶活性。由土壤肥力综合指标值(IFI)可知,不同生物炭处理土壤的IFI值为46.09~59.55,均高于对照(IFI 40.11),且IFI随着生物炭添加量的增大而升高,油菜秸秆生物炭处理的土壤肥力水平优于玉米和水稻秸秆生物炭处理。【结论】生物炭对酸性黄壤的体积质量、pH、养分含量和酶活性均具有明显影响,且生物炭类型及其添加量对以上指标的影响存在明显差异。生物炭能明显提高黄壤肥力水平,其中添加4%油菜秸秆生物炭是提高酸性黄壤肥力水平的最优处理。  相似文献   

11.
生物炭性质虽然稳定,却也并非一成不变,其理化性质会随着时间推移而发生缓慢变化,进而对其功能产生影响。为明确陈化对生物炭理化性质的影响,探明生物炭陈化机制。以稻壳生物炭为试验材料,利用PVC圆柱,在人工气候箱中通过25个周期冻融循环(30℃/10d,-25℃/10d)和淋溶模拟生物炭陈化过程,分析生物炭表观结构、元素组成、氧化程度、吸附能力、pH值、碳酸盐含量等理化性质变化。结果表明:陈化处理破坏稻壳生物炭的表观结构、增加表面孔隙且随处理周期延长破坏程度加剧。C元素含量和C/H比值在25个周期中没有显著变化,C/N比值、速效P和N含量呈先下降后平稳趋势,速效K含量由7917mg·kg~(-1)下降到917mg·kg~(-1),达极显著水平。陈化处理初期生物炭表面O/C比值迅速上升,到第7个周期后开始下降,到15个周期后趋于平稳,说明陈化处理初期稻壳生物炭表面氧化迅速,后期则趋于平稳。陈化处理到25个周期时,生物炭对对苯二酚的吸附量由初始的5.93mg·g~(-1)增加到11.73mg·g~(-1),说明陈化处理增加了稻壳生物炭的吸附能力。陈化处理对pH值的影响呈先下降后上升,最后趋于平稳,且与原始生物炭pH值无显著差异。碳酸盐含量则呈现下降趋势至20个周期后趋于平稳。综合分析表明陈化处理对稻壳生物炭理化性质有一定影响,对其速效养分和吸附能力影响较显著。  相似文献   

12.
为探究施用不同原料生物炭对酸性土壤改良及氮素矿化作用和硝化作用的影响,以酸性红壤为供试土壤,添加水稻秸秆、稻壳及木屑3种原料制备的生物炭,开展为期50 d的室内培养试验.设置空白对照(CK)、单施化学肥料(F)、水稻秸秆生物炭+化学肥料(B1)、稻壳生物炭+化学肥料(B2)、木屑生物炭+化学肥料(B3)共5个处理,测定...  相似文献   

13.
以柠条为原料,分别在200、300、400 ℃和600 ℃进行炭化处理制备柠条生物炭,分析柠条粉末和生物炭的组分,用扫描电镜观察柠条生物炭的形貌,比表面积分析仪绘制柠条生物炭的吸附等温线,研究柠条生物炭的孔容、孔径以及比表面积等结构参数。使用土柱实验装置将柠条生物炭与土壤混合,通过淋溶试验检测柠条生物炭对土壤中的除草剂敌草隆的吸附效能。结果表明,柠条炭化的吸附等温线属于典型的I型吸附线,随着炭化温度的升高,柠条生物炭的炭得率不断降低,在600 ℃进行炭化处理可以得到44.71%的柠条生物炭,其比表面积可达到187.56 m2·g-1,平均孔径4.83 nm,微孔体积占总孔体积的52%。土壤中添加1%的柠条生物炭就可以对土壤中的敌草隆产生显著吸附效果,添加3%的柠条生物炭可以获得最佳的经济效益。  相似文献   

14.
以新疆棉花秸秆为原料,研究炭化温度和炭化时间、升温速率对棉秆基生物炭产量和理化性质的影响。选择300℃、400℃、500℃、600℃为最高炭化温度,5℃/min、10℃/min、15℃/min、20℃/min为升温速率,30 min、60 min、90 min、120min为炭化时间。棉秆生物炭的最高固定碳为63%。原料的热解特性在惰性气体N2保护下进行TG-DTG分析。对棉秆生物炭的元素成分、PH值、固定碳、灰分和碳含量进行研究,同时进行了SEM,FT-IR表征。随着炭化温度的增加,生物炭pH值、灰分含量、碳稳定性及总碳的含量也逐渐增加,而生物炭产量、挥发分、H、O、N、S元素的含量减少。比表面积结果显示高温制备生物炭的孔隙率有所增加,但增加幅度并不大。研究发现加热时间和升温速率对棉秆生物炭性质的影响不显著,炭化温度对棉秆生物炭性质的影响显著。  相似文献   

15.
炭化温度是实现艾纳香加工废弃物转化成生物炭的重要因素。本文研究了炭化温度对艾纳香生物炭理化性质的影响,以期为艾纳香生物炭的利用奠定基础。本研究对比了300、500和700℃对艾纳香生物炭产率、比表面积、形貌特征、表面矿质组成及红外光谱特征等理化特性的影响。温度对艾纳香生物炭产率和理化特性影响较大,当炭化温度为300℃时,其产率最高,为45.52%,而且所产生的生物炭保有生物质炭应有C、O为主体;但当温度进一步升高时,其主体结果呈现片状、簇状脱落,直至其主体结构崩解,其C、O元素含量逐渐降低,Na、Mg、K、P、Cl等矿质元素逐渐提高;其来源于糖类、蛋白质、核酸等物质的羟基(-OH)、N-H基、C=O、-COOH等基团逐渐裂解消失,形成-C-C-、Si-O-Si等基团。300~500℃是艾纳香生物炭的最佳炭化温度,在该温度下制备形成的艾纳香生物炭不仅保持了生物炭所特有的比表面积大、多孔等共有形貌结构特征,还保护了艾渣中的C、O结构主体及K、Ca、Mg等矿质元素。  相似文献   

16.
为了解秸秆生物炭对土壤容重、pH值、土壤性状、重金属生物有效性以及玉米产量的影响。在甘肃省酒泉市城郊农场开展不同生物炭量的试验研究。结果表明,施入生物炭后能显著改变土壤性状,有机质、速效磷、碱解氮、速效钾含量分别提高了3.3%~4.7%、11.1%~32.8%、0.5%~4.7%、26.7%~35.6%,且施入量越高影响越显著(T4>T3>T2>T1),土壤容重降低3.5%~6.3%、pH值提高1.8%~3.0%;施生物炭后对玉米产量没有显著影响,T4处理产量最高,比T1增产2.5%;施入不同量的生物炭可不同程度的降低土壤中重金属生物有效性。研究为生物质炭在河西走廊寒旱农业区土壤改良方面的应用提供了试验依据。  相似文献   

17.
生物炭对土壤理化性质及作物生长的影响   总被引:3,自引:0,他引:3  
通过大田试验研究了生物炭对红壤改良及青菜生长和产量的影响。结果表明:生物炭对青菜株高及产量增加有促进作用,施加生物炭可以提高土壤有机碳含量,而对土壤有效氮、磷、钾影响较小。  相似文献   

18.
为了探讨有机肥、生物炭配施对吉林省西部沙化土壤理化性质的影响,设置不施改良剂、单施有机肥、单施生物炭、低量生物炭+有机肥、高量生物炭+有机肥这5种处理,进行为期3年的大田试验。结果表明,改良剂的施加能够降低土壤容重,改善土壤持水性及团聚体结构的稳定性,提高土壤电导率、阳离子交换量和速效养分元素含量。不同处理间的效果存在差异,其中生物炭、有机肥联合施加对土壤各项理化性质的影响均明显高于单施处理的效果,以高量生物炭+有机肥处理效果最佳。单施生物炭对土壤阳离子交换量、总有机碳及速效钾含量的影响优于有机肥,单施有机肥对速效磷含量作用效应优于单施生物炭处理。  相似文献   

19.
糠醛渣及其生物炭对盐渍土理化性质影响的比较研究   总被引:6,自引:2,他引:6  
为了更好地利用糠醛渣及其炭化产物来改良盐渍土,通过室内56 d的培养试验研究了添加糠醛渣和其生物炭后土壤pH值、电导率、总有机碳、阳离子交换量、碱化度、有效磷、硝氮、氨氮等理化性质的变化。结果表明,糠醛渣加入土壤后能降低土壤pH值,且效果比生物炭显著,2.5%糠醛渣甚至比5%生物炭更易降低盐渍土的pH值。从提高土壤有效磷含量的角度来说,5%的糠醛渣能提高土壤中4~6倍有效磷含量,其改良作用要优于生物炭。与糠醛渣相比,生物炭更能增加土壤总有机碳含量,最大增幅处比糠醛渣高62%。在降低土壤碱化度方面生物炭也比糠醛渣强,5%糠醛渣和生物炭处理土壤碱化度分别为培养初期的51%和43%。同时也发现,生物炭并未比糠醛渣有更高的增加土壤阳离子交换量的能力,这可能与试验周期较短有关。总之,从短期试验效果看,在降低土壤pH值和提高土壤有效磷方面,糠醛渣作用较为显著;而在提高土壤总有机碳含量,降低土壤碱化度方面,生物炭优于糠醛渣。  相似文献   

20.
为了探索利用棉花秸秆制备高质量生物炭的有效途径,比较了不同炭化工艺条件(热解温度、保留时间和原料粒径)下所得生物炭的理化特性。pH值测定结果表明,生物炭呈碱性,且随着热解温度的上升,生物炭的pH呈明显的上升趋势,从300℃下的8.18上升至700℃下的11.10。扫描电镜(SEM)观察结果表明,热解工艺对生物炭表面孔状大小和分布具有显著影响。红外扫描结果表明,生物炭表面具有丰富的官能团,且随着热解温度的升高,-OH、-C=C-和-C-H吸收峰的强度均有所减弱。比表面积(BET)测试结果表明,随着热解温度的上升,比表面积及总孔容均明显上升;随着保留时间的上升和粒径的减小,比表面积及总孔容略有上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号