首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The effects of different deficit-irrigation strategies on plant-water status and yield were studied for 5 years in early-maturing peach trees (cv. Flordastar) growing under Mediterranean climatic conditions. The deficit-irrigation (DI) treatments were continuous, regulated (RDI), partial root-zone drying and a soil water content-based treatment. Peach fruit yield was more affected by post-harvest irrigation than by pre-harvest irrigation. Deficit irrigation for this cultivar produced significant water savings but caused a yield penalty, with the RDI treatment showing the clearest manifestation of this. Deficit irrigation in general affected the number of fruits per tree more than fruit size. Average stem water potential threshold values for summer (July–August–September) should be maintained above ?0.9 MPa if yields are not to decrease by more than 10 %. The marginal water use efficiency value of 0.07 for the irrigation range studied indicates that the maximum benefit, derived from a linear production function, will always occur at the limit of the water constraint prior to maximum yield values. Decision-makers should apply the minimal amount of irrigation water that allows maximum yields. Since DI treatments decrease yield due to smaller tree sizes, it is advisable that thinning practices be adapted when deficit irrigation is imposed.  相似文献   

2.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

3.
The objectives of this study were to investigate the effects of full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) on plant biomass, irrigation water productivity (IWP), nitrogen use efficiency (NUE) of tomato, and soil microbial C/N ratio. The plants were grown in pots with roots split equally between two soil compartments in a climate-controlled glasshouse. During early fruiting stage, plants were exposed to FI, DI, and PRD treatments. In FI, both soil compartments were irrigated daily to a volumetric soil water content of 18%; in PRD, only one soil compartment was irrigated to 18% while the other was allowed to dry to ca. 7-8%, then the irrigation was shifted; in DI, the same amount of water used for the PRD plants was equally split to the two soil compartments. The results showed that, the FI treatment produced significantly higher dry biomasses of leaves, stems, and fresh weight of fruit and water productivity of aboveground dry biomass production than either DI or PRD, however, fruit IWP in DI was 25% higher than that of FI, and harvest index in DI and PRD were 50% and 22% higher than FI, respectively, for the 26% and 23% less water used in the DI and PRD, respectively, than the FI treatment. The DI treatment caused the smallest losses of N and highest N use efficiency by fruit. Both DI and PRD caused a significant increase in the soil microbial C/N ratio, meaning ratio of fungal biomass was high at low soil water contents. The result indicates that more work is needed to link the aboveground N uptake and the underground microbially mediated N transformation under different water-saving irrigation regimes.  相似文献   

4.
The effect of two deficit irrigation (DI) strategies on fruit and oil production and quality in a 12-year-old ‘Arbequina’ olive orchard with 238 trees ha?1 was evaluated. The T1 treatment was a sustained DI regime (65% ETc, 2–3 irrigation events per week). The T2 treatment was a low-frequency DI (increasing stress/rewatering cycles, which consisted in withholding irrigation until fruit shrivelling and then applying a recovery irrigation providing the same amount of water that supplied in T1 for that period). As compared to full irrigation, both strategies reduced fruit production and increased the variability of fruit ripening, but favoured oil extraction. Free acidity, peroxide value, K232, K270 and sensory quality of oil were not affected by DI. Furthermore, carotenoid, chlorophyll, phenol, and oleic contents increased. The greatest phenol content and bitterness index were found in oil from T2 trees. Later harvesting caused sensory quality and tocopherol losses, although the oil synthesized in DI olives increased.  相似文献   

5.
The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period.  相似文献   

6.
The effect on productive and vegetative behavior and on the quality of oil from Olea europaea L. when applying two distinct irrigation techniques, full irrigation (FI) and regulated deficit irrigation (RDI), was studied. A total of five wet soil volumes (WSVs, 12, 24, 35, 47 and 59%) expressed in terms of the potential root exploration volume were established for each strategy. The experiment was performed on cv. ‘Arbequina’ in an olive grove in Tarragona (Spain). Results obtained suggest that a 20% reduction in the irrigation dose (RDI) had no significant effect either on olive fruit and oil production or on oil content. Likewise, no significant increase in irrigation water-use efficiency was observed for FI with respect to RDI. A tendency for olive and oil production per hectare to increase with increased WSV percentage was observed, although there were no significant differences between FI and RDI except for 59% WSV in the RDI strategy, producing the best response.  相似文献   

7.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

8.
The effects of deficit irrigation (DI) and partial rootzone drying (PRD) on apple (Malus domestica Borkh. Cv. ‘Fuji’) yield, fruit size, and quality were evaluated from 2001 to 2003 in the semi-arid climate of Washington State. PRD and DI were applied from about 40 days after full bloom until just before (2001, 2002) or after (2003) harvest and compared to a control irrigation (CI). Irrigation was applied once a week using two micro-sprinklers per tree. Soil-water content in CI was maintained above 80% of field capacity using micro-sprinklers on both sides of a tree. The DI and PRD were irrigated at about 50% (2001–2002) and 60% (2003) of the CI, but differed in placement of irrigation. For DI both micro-sprinklers were operated whereas PRD was irrigated using only one micro-sprinkler wetting half the rootzone compared to CI and DI. Wetting/drying sides of PRD trees were alternated every 2–4 weeks (2001, 2002) or when soil-water content on the drying side had reached a threshold value (2003). Seasonal (1 May–31 October) potential evapotranspiration (ET0) was 967, 1002, and 1005 mm for 2001, 2002, and 2003, and rainfall totaled 58, 39, and 21 mm, respectively. Irrigation amounts applied were 596, 839, and 685 mm in the CI; 374, 763, and 575 mm in the DI; and 337, 684, and 513 mm in the PRD for the 2001, 2002, and 2003 seasons. Higher irrigation volumes in 2002 were due to excessive (177–324 mm) irrigations after harvest. No significant differences were found in yield and fruit size among treatments in 2001 and 2003. In 2002, DI had significantly lower yield than CI, while the yield of PRD did not differ from CI and DI. Fruit from DI and PRD were firmer and had higher concentrations of soluble solids than fruit from CI, both at harvest and following short-term storage at 20°C, but differences to CI were significant in 2002 only. Treatment effects on fruit titratable acidity were inconsistent. Additional water was preserved in the soil profile under PRD compared to DI in 2001 and 2003, but no statistical differences were found between PRD and DI in 2002. Approximately 45–50% of irrigation water was saved by implementing newly developed DI and PRD irrigation strategies without any significant impact on fruit yield and size with PRD. However, apple yield was reduced by DI compared to CI in the second year.  相似文献   

9.
Agricultural production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant plant varieties or water management for arid and semi-arid areas under water shortage conditions. A field study was conducted to determine effects of seasonal deficit irrigation on plant root yield, quality and water use efficiency (WUE) of sugar beet for a 2-year period in the semi-arid region. Irrigations were applied when approximately 50–55% of the usable soil moisture was consumed in the effective rooting depth at the full irrigation (FI) treatment. In deficit irrigation treatments, irrigations were applied at the rates of 75, 50 and 25% of full irrigation treatment on the same day. Irrigation water was applied by a drip irrigation system. Increasing water deficits resulted in a relatively lower root and white sugar yields. The linear relationship between evapotranspiration and root yield was obtained. Similarly, WUE was the highest in DI25 irrigation conditions and the lowest in full irrigation conditions. According to the averaged values of 2 years, yield response factor (k y ) was 0.93 for sugar beet. Sugar beet root quality parameters were influenced by drip irrigation levels in both years. The results revealed that irrigation of sugar beet with drip irrigation method at 75% level (DI25) had significant benefits in terms of saved irrigation water and large WUE, indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25% saving of irrigation water (DI25) caused 6.1% reduction in the net income.  相似文献   

10.
The response of mature ‘Andross’ cling peach (Prunus persica L. Batch) trees to regulated deficit irrigation in deep soils was studied for 3 years. Trees were either fully irrigated or subjected to deficit irrigation during Stage II of fruit development and/or during post-harvest. Single regulated deficit irrigation regimes reduced irrigation by 13–24%, while combined regime reduced it by 23–35%. Deficit irrigation during Stage II and/or post-harvest significantly reduced vegetative growth of the trees. Fruit production was not affected by any irrigation regime until the fourth year when fruit set decreased slightly with combined deficit irrigation. Overall, the results indicate that regulated deficit irrigation can be used successfully on peach trees grown in deep soils.  相似文献   

11.
This study assesses the long-term suitability of regulated (RDI) and sustained deficit irrigation (SDI) implemented over the first six growing seasons of an almond [Prunus dulcis (Mill.) D.A. Webb] orchard grown in a semiarid area in SE Spain. Four irrigation treatments were assessed: (i) full irrigation (FI), irrigated to satisfy maximum crop evapotranspiration (100% ETc); (ii) RDI, as FI but receiving 40% ETc during kernel-filling; (iii) mild-to-moderate SDI (SDImm), irrigated at 75–60% ETc over the entire growing season; and (iv) moderate-to-severe SDI (SDIms), irrigated at 60–30% ETc over the whole season. Application of water stress from orchard establishment did not amplify the negative effects of deficit irrigation on almond yield. Irrigation water productivity (IWP) increased proportionally to the mean relative water shortage. SDIms increased IWP by 92.5%, reduced yield by 29% and applied 63% less irrigation water. RDI and SDImm showed similar productive performances, but RDI was more efficient than SDImm to increase fruiting density and production efficiency (PE). We conclude that SDIms appears to be a promising DI option for arid regions with severe water scarcity, whereas for less water-scarce areas RDI and SDImm behaved similarly, except for the ability of RDI to more severely restrict vegetative development while increasing PE.  相似文献   

12.
In order to investigate the response of vegetative growth, fruit development and water use efficiency to regulated deficit irrigation at different growth stages of pear-jujube tree (Zizyphus jujube Mill.), different water deficit at single-stage were treated on field grown 7-year old pear-jujube trees in 2005 and 2006. Treatments included severe (SD), moderate (MD) and low (LD) water deficit treatments at bud-burst to leafing (I), flowering to fruit set (II), fruit growth (III) and fruit maturation (IV) stages. Compared to the full irrigation (control), different water deficit treatments at different growth stages reduced photosynthesis rate (Pn) slightly and transpiration rate (Tr) significantly, thus it improved leaf water use efficiency (WUEL, defined as the ratio of Pn to Tr) by 2.7-26.1%. After the re-watering, Pn had significant compensatory effect, but Tr was not enhanced significantly, thus WUEL was improved by 31.4-42.2%. I-SD, I-MD, II-SD and II-MD decreased new shoot length, new shoot diameter and panicle length by 8-28%, 13-23% and 10-31%, respectively. Simultaneously, they reduced leaf area index (LAI) and pruning amount significantly. Flowering of pear-jujube tree advanced by 3-8 days in the water deficit treatments at stage I, Furthermore, SD and MD at stage I increased flowers per panicle and final fruit set by 18.9-40.5% and 15.5-36.6%, respectively. After a period of re-watering, different water deficit treatments at different growth stages improved the fruit growth rate by 15-30% without reduction of the final fruit volume. Compared to the control, I-MD, I-SD, I-LD, I-MD and I-SD treatments increased fruit yield by 13.2-31.9%, but reduced water consumption by 9.7-17.5%, therefore, they enhanced water use efficiency at yield level (WUEY, defined as ratio of fruit yield to total water use) by 17.3-41.4%. Therefore, suitable period and degree of water deficit can reduce irrigation water and restrain growth redundancy significantly, and it optimize the relationship between vegetative growth and reproductive growth of pear-jujube trees, which maintained or slightly increased the fruit yield, thus water use efficiency was significantly increased.  相似文献   

13.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   

14.
Water for irrigation is in short supply worldwide, therefore reduced irrigation options will have to be explored. We did this for ‘Golden Smoothee’ apple over the growing seasons of 2003-2005 at the IRTA-Estaciò Experimental de Lleida (41°37′ N; 0° 52′ E; 260 m a.s.l.), Catalonia, Spain. This region has a temperate climate with winter-dominant rainfall. Averages of annual rainfall and reference evapotranspiration over 2000-2009 were, respectively, 371 and 1023 mm. The treatments were: Control (C), receiving full irrigation; spring irrigation (SI), where at the budbreak 80 mm of water was applied followed by watering so that the total water applied in the season was either at 33% of C (SI-33) or at 50% of C (SI-50); and deficit irrigation (DI), where trees were irrigated either with 33% of C (DI-33) or with 50% of C (DI-50). Water in DI was applied either through one dripper per tree (DI-33-1d and DI-50-1d) or through two drippers per tree (DI-33-2d and DI-50-2d). Trees showed biennial bearing with 2004 being an ‘off-year’ when treatment effects on yield were largely masked by the higher values of stem water potential associated with lower crop loads. SI-50 and SI-33 performed poorly and cannot be recommended. For each of the DI treatments, the one-dripper version increased fresh market yield and fruit size. For example, although DI-50 performed better than DI-33, DI-33-1d was similar in performance to DI-50-2d. Under water shortage, we recommend whole-season application of DI-50-1d and DI-33-1d depending on the availability of water supply.  相似文献   

15.
不同灌溉模式下草莓对水分胁迫的生理响应研究   总被引:1,自引:0,他引:1  
【目的】探究不同灌溉模式下草莓对水分胁迫的生理响应,确定草莓节水灌溉适宜模式。【方法】采用3种灌溉模式:充分灌溉(FI,CK)、分根灌溉(PRI)和亏缺灌溉(DI),PRI和DI模式下设置3个水分胁迫水平:轻度(LS)、中度(MS)和重度(SS),研究了不同灌溉模式下水分胁迫对草莓叶片叶绿素量、光合与蒸腾速率、渗透调节物质和丙二醛(MDA)量的影响。【结果】DI与PRI灌溉模式下,草莓叶片叶绿素a(Chl a)和叶绿素b(Chl b)量都显著低于CK,且随着基质水分胁迫程度的加剧而呈下降趋势;与DI模式相比,PRI模式下草莓叶片叶绿素量相对较高;随着水分胁迫程度的增强,DI和PRI草莓叶片蒸腾速率下降幅度明显,分别为35.2%~44.7%和21.0%~47.0%,而净光合速率变化不明显;MS和SS水平下DI和PRI的水分利用效率(WUE)分别较CK高101.8%~117.9%和68.8%~149.8%;不同水分胁迫水平下,PRI草莓叶片脯氨酸(PRO)累积量显著高于CK(19.0%~26.0%),且在LS和MS水平下显著高于DI;PRI草莓叶片MDA累积量仅在SS水平下显著高于CK(30.2%),而DI草莓叶片MDA累积量在MS和SS水平下显著高于CK,分别为34.4%和56.4%。【结论】PRI模式草莓比DI模式具有更强的渗透调节能力和耐旱性,PRI-MS组合为草莓节水灌溉适宜模式。  相似文献   

16.
Greenhouse grown tomato was used to test partial root drying (PRD), a newly developing irrigation technique to save irrigation water, in Spring- and Fall-planted fresh-market tomato (Lycopersicon esculentum L., cv. Fantastic) cultivar. The PRD practice simply requires wetting of one half of the rooting zone and leaving the other half dry, thereby utilizing reduced amount of irrigation water applied. The wetted and dry sides are interchanged in the subsequent irrigations. Six irrigation treatments were tested during the two-year work in 2000 and 2001: (1) FULL, control treatment where the full amount of irrigation water, which was measured using Class-A pan evaporation data, was applied to the roots on all sides of the plant; (2) 1PRD30, 30% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged with every irrigation; (3) 1PRD50; (4) 2PRD50, 50% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged every and every other irrigation, respectively; (5) DI30 and (6) DI50, 30 and 50% deficit irrigations, respectively. The defined deficit levels were all in comparison to FULL irrigation. During the first year study in 2000, only three treatments (FULL, 1PRD30 and 2PRD50) were tested. Five treatments with exception of 2PRD50 were included in 2001. The FULL irrigation treatment, in Spring-planted tomato having a 153 day growth period, yielded 110.9 t ha−1. The resulting irrigation-water-use efficiency (IWUE) was 321.8 kg (ha mm)−1. The 1PRD50 treatment gave 86.6 t ha−1, which was not statistically different (P ≤ 0.05) from the FULL irrigation (the control) and had 56% higher IWUE. Although yield differences were not statistically significant in Fall-planted tomato, the highest fruit yield was again obtained under FULL irrigation treatment (205.2 t ha−1) over a growth period of 259 days after transplanting. The PRD treatments had 7–10% additional yield over the deficit irrigation receiving the same amount of water. The PRD treatments gave 10–27% higher marketable tomato yield (>60 g per fruit), compared with the DI treatments. Abscisic acid (ABA) concentrations measured in fresh leaf tissue was the highest under PRD practice relative to FULL and DI treatments. The high ABA content of fresh-leaf tissue observed in the work supports the root signalling mechanism reported earlier in plants having undergone partial root drying cycles.  相似文献   

17.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

18.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

19.
The effects of partial root-zone drying (PRD) as compared with deficit irrigation (DI) and full irrigation (FI) on nitrogen (N) uptake and partitioning in potato (Solanum tuberosum L.) were investigated. Potato plants were grown in split-root pots and were exposed to FI, PRD, and DI treatments at tuber bulking stage. Just before onset of the irrigation treatment, each plant received 0.6 g N (in the form of urea) with 5% of which was 15N-labeled. After 4 weeks of irrigation treatments (i.e., one drying/wetting cycles completed in the PRD treatment), the plants were harvested and plant dry mass and N content were determined. The results showed that although the plant dry mass was not affected by the irrigation treatments, due to a reduced water use by the plant, both the PRD and DI treatments significantly increased crop water use efficiency. Compared with the FI and DI plants, PRD plants had significantly higher N contents in the leaves, stems and tubers; whereas, the 15N content in the plant organs was similar for the FI, PRD, and DI plants. It is suggested that not the root N uptake efficiency but the soil N availability was enhanced by the PRD treatment.  相似文献   

20.
Agriculture is a big consumer of fresh water in competition with other sectors of the society. Within the EU-project SAFIR new water-saving irrigation strategies were developed based on pot, semi-field and field experiments with potatoes (Solanum tuberosum L.), fresh tomatoes (Lycopersicon esculentum Mill.) and processing tomatoes as model plants. From the pot and semi-field experiments an ABA production model was developed for potatoes to optimize the ABA signalling; this was obtained by modelling the optimal level of soil drying for ABA production before re-irrigation in a crop growth model. The field irrigation guidelines were developed under temperate (Denmark), Mediterranean (Greece, Italy) and continental (Serbia, China) climatic conditions during summer. The field investigations on processing tomatoes were undertaken only in the Po valley (North Italy) on fine, textured soil. The investigations from several studies showed that gradual soil drying imposed by deficit irrigation (DI) or partial root zone drying irrigation (PRD) induced hydraulic and chemical signals from the root system resulting in partial stomatal closure, an increase in photosynthetic water use efficiency, and a slight reduction in top vegetative growth. Further PRD increased N-mineralization significantly beyond that from DI, causing a stay-green effect late in the growing season. In field potato and tomato experiments the water-saving irrigation strategies DI and PRD were able to save about 20-30% of the water used in fully irrigated plants. PRD increased marketable yield in potatoes significantly by 15% due to improved tuber size distribution. PRD increased antioxidant content significantly by approximately 10% in both potatoes and fresh tomatoes. Under a high temperature regime, full irrigation (FI) should be undertaken, as was clear from field observations in tomatoes. For tomatoes full irrigation should be undertaken for cooling effects when the night/day average temperature >26.5 °C or when air temperature >40 °C to avoid flower-dropping. The temperature threshold for potatoes is not clear. From three-year field drip irrigation experiments we found that under the establishment phase, both potatoes and tomatoes should be fully irrigated; however, during the later phases deficit irrigation might be applied as outlined below without causing significant yield reduction:
Potatoes
°
After the end of tuber initiation, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Fresh tomatoes
°
From the moment the 1st truce is developed, DI is applied at 85-80% of FI for two weeks. In the middle period, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Processing tomatoes
°
From transplanting to fruit setting at 4th-5th cluster, the PRD and DI threshold for re-irrigation is when the plant-available soil water content (ASWC) equals 0.7 (soil water potential, Ψsoil = −90 kPa). During the late fruit development/ripening stage, 10% of red fruits, the threshold for re-irrigation for DI is when ASWC = 0.5 (Ψsoil = −185 kPa) and for PRD when ASWC (dry side) = 0.4 (Ψsoil, dry side = −270 kPa).
The findings during the SAFIR project might be used as a framework for implementing water-saving deficit irrigation under different local soil and climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号