首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Sub-surface irrigation with porous clay pipe can be an efficient, water saving method of irrigation for many less developed arid and semi-arid regions. Maximizing the efficiency of clay pipe irrigation requires guidelines and criteria for system design and operation. In this study, experimental and simulated (with HYDRUS (2D/3D)) soil wetting patterns were investigated for sub-surface pipe systems operating at different water pressures. Predictions of the soil water content made with HYDRUS were found to be in good agreement (R2 = 0.98) with the observed data. Additional simulations with HYDRUS were used to study the effects of various design parameters on soil wetting. Increasing the system pressure increased the size of the wetted zone. The installation depth affects the recommended lateral spacing as well as the amount of evaporative water loss. For a given water application, the potential rate of surface evaporation affected the shape of the wetted region only minimally. Soil texture, due to its connection to soil hydraulic conductivity and water retention, has a larger impact on the wetting geometry. In general, greater horizontal spreading occurs in fine texture soils, or in the case of layered soils, in the finer textured layers.  相似文献   

2.
日光温室滴灌条件下土壤基质势对番茄生长的影响   总被引:3,自引:0,他引:3  
利用埋在滴头正下方0.2 m深度的真空表负压计,通过控制土壤基质势下限(-10 kPa,S1;-20 kPa,S2;-30 kPa,S3;-40 kPa,S4),研究在太行山山前平原日光温室覆膜滴灌条件下土壤基质势对早春茬口普通番茄(Lycopersicon esculentum Mill.var. commune Bailey)生长的影响。试验结果表明:番茄的叶面积和叶绿素随土壤基质势的提高趋于增加;土壤基质势越高,产量越高;土壤基质势-30kPa时,灌溉水利用效率最高;番茄果实的Vc含量随土壤基质势的降级而降低;番茄果实的可溶性糖含量与土壤基质势的变化梯度没有关系。综合考虑番茄产量、品质和灌溉水利用效率,日光温室覆膜滴灌条件下,早春茬口番茄的土壤基质势控制在-20~-30 kPa最为适宜。  相似文献   

3.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   

4.
Knowledge of the dimensions of the wetted zone formed under point source surface drip irrigation is essential to the design of cost-effective and efficient irrigation systems. Numerical simulations were carried out with Hydrus-2D/3D to investigate the influence of emitter discharge rates and initial soil moisture conditions on the wetting pattern dimensions of a series of soils with varying textures. Numerical simulations of simple 2D soil tank irrigation experiments were also conducted on two soil types. Based on the simulation results, the parameters of the Schwartzman and Zur model were refined. The results showed a small influence of discharge rates >1 L h?1 on the size of the wetting pattern. The only major difference was observed for the rates lower than 0.5 L h?1, where the largest wetting patterns were observed. Higher initial soil water content caused larger wetting pattern sizes in all directions. When compared to the 2D tank experimental results, Hydrus-2D/3D predicted the wetting pattern dimensions with a relatively small root mean square error not exceeding 2.6 cm. The numerical data obtained for a wide range of textures provided the opportunity to refine the parameters of the Schwartzman and Zur model, which, when compared to experimental data from the literature, provided good estimates of wetting pattern dimensions. This suggests that this simple model, for which the only soil parameter required is the saturated hydraulic conductivity, could provide a valuable and practical tool for irrigation design.  相似文献   

5.
日光温室滴灌条件下土壤基质势对彩椒生长的影响   总被引:1,自引:0,他引:1  
利用埋在滴头正下方0.2 m深度的真空表负压计,通过控制土壤基质势下限(-10 kPa,S1;-20 kPa,S2;-30 kPa,S3;-40 kPa,S4),研究太行山山前平原日光温室覆膜滴灌条件下土壤基质势对秋冬茬彩椒(紫星二号)(Capsicum frutescens L.)生长的影响。试验结果表明,彩椒的株高和叶面积随土壤基质势的提高而增加;但过高的土壤基质势导致彩椒产量下降,土壤基质势在-30 kPa时,彩椒产量和灌溉水利用效率最高;彩椒果实的可溶性糖和可溶性固形物含量随土壤基质势的提高而降低;彩椒果实的Vc含量和土壤基质势的变化梯度没有关系。综合考虑彩椒产量、品质和灌溉水利用效率,日光温室覆膜滴灌条件下彩椒的土壤基质势控制在-20~-30 kPa最为适宜。  相似文献   

6.
About half of the total fresh water used for irrigation in Asia is used for rice production. Decreasing water resources and increasing water costs necessitates increasing water use efficiency for rice. The most common method of irrigation in northwestern India is through alternate wetting and drying with a fixed irrigation interval, irrespective of soil type and climatic demand resulting in over-irrigation or under-irrigation under different soil and weather situations. Soil matric potential may be an ideal criterion for irrigation, since variable atmospheric evaporativity, soil texture, cultural practices and water management affect rice irrigation water requirements. A 4-year field study was conducted to assess the feasibility of rice irrigation scheduling on the basis of soil matric potential and to determine the optimum matric potential so as to optimize irrigation water without any adverse effect on the yield. The treatments included scheduling irrigation to rice with tensiometers installed at 15–20 cm soil depth at five levels of soil matric suction viz. 80, 120, 160, 200 and 240±20 cm, in addition to the recommended practice of alternate wetting and drying with an interval of 2 days after complete infiltration of ponded water. The grain yield of rice remained unaffected up to soil moisture suction of 160±20 cm each year. Increasing soil matric suction to 200 and 240±20 cm decreased rice grain yield non-significantly by 0–7% and 2–15%, respectively, over different years compared to the recommended practice of the 2-day interval for scheduling irrigation. Irrigation at 160±20 cm soil matric suction helped save 30–35% irrigation water compared to that used with the 2-day interval irrigation. With a soil matric potential irrigation criterion the total amount of irrigation water used was a function of the number of rainy days and evaporation during the rice season.  相似文献   

7.
盐碱地滴灌对新疆杨生长及土壤盐分分布影响   总被引:4,自引:0,他引:4  
通过田间试验研究高垄覆膜滴灌模式下不同土壤基质势对盐碱地新疆杨生长以及土壤盐分分布的影响。试验设5个水平的土壤基质势处理:-5kPa(S1),-10kPa(S2),-15kPa(S3),-20kPa(S4),-25kPa(S5),每个处理重复3次,按随机区组布置。试验结果表明,2009年生育末期,根系周围土体中的盐分比...  相似文献   

8.
[Objective]Irrigation schedule needs to know the spatiotemporal dynamics of soil moisture in root zone. The objective of this paper is to investigate the feasibility of using matric potential measured at 20 cm below the drip emitter as a proxy for soil moisture in the root zone to schedule irrigation.[Method]The experiment was conducted in a greenhouse and the model plant was tomato. We compared seven matric potential (SMP) thresholds in that whenever the measured soil matric potential dropped below them, drip irrigation was resumed. The values of the SMP thresholds varied from flowering and fruit-setting stage to fruiting stage, and the seven combinations (flowering and fruit-setting stage/fruiting stage) were -15 kPa/-15 kPa (S1), -15 kPa/-30 kPa (S2), -15 kPa/-45 kPa (S3), -25 kPa/-25 kPa (S4), -30 kPa/-15 kPa (S5), -30 kPa/-30 kPa (S6), and -30 kPa/-45 kPa (S7). In each treatment, we measured growth, fruit quality, water consumption and water use efficiency of the tomato.[Result]Stem diameter increased with SMP threshold at both flowering and fruit-setting stage and fruiting stage, whereas the plant height was only responsive to SMP at flowing and fruit-setting stage. The relative chlorophyll content in leaf (SPAD) did not show significant difference between treatments at flowering and fruit-setting stage but inversely increased with the SMP threshold at fruit setting stage. Decreasing the SMP threshold at flowering and fruit-setting stage could reduce the percentage of defective fruits and increase soluble solids content. Yield increased inversely with SMP threshold at fruit setting stage, peaking when SMP was -45 kPa. Lowering the SMP threshold increased irrigation amount and hence water consumption, thereby decreasing water use efficiency. [Conclusion]Our experimental results suggest that setting the SMP at -30 kPa at the flowering and fruit-setting stage and -45 kPa at the fruiting period appears to be optimal to best balance yield, fruit quality, irrigation water use efficiency and water use efficiency for winter-spring tomato grown in solar greenhouse in North China. © The Author(s) 2019.  相似文献   

9.
Potato evapotranspiration and yield under different drip irrigation regimes   总被引:1,自引:0,他引:1  
A field experiment comparing different irrigation frequencies and soil matric potential thresholds on potato evapotranspiration (ET), yield (Y) and water-use efficiency (WUE) was carried out in a loam soil. The experiment included five treatments for soil matric potential: F1 (-15 kPa), F2 (-25 kPa), F3 (-35 kPa), F4 (-45 kPa) and F5 (-55 kPa) and six treatments for irrigation frequency: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days). Results indicate that both soil matric potential and drip irrigation frequency influenced potato ET, Y and WUE. Potato ET increased as irrigation frequency and soil matric potential increased. Comparing soil water potential, the highest ET was 63.4 mm (32.1%) more than the lowest value. Based on irrigation frequency treatments, the highest ET was 36.7 mm (19.2%) more than the lowest value. Potato Y and WUE were also found to increase as irrigation frequency increased. Potato Y increased with an increase in soil water potential then started to decrease. The highest Y and WUE values were achieved with a soil matric potential threshold of -25 kPa and an irrigation frequency of once a day.Communicated by J. Ayars  相似文献   

10.
温室滴灌土壤基质势调控对番茄生长、品质和耗水的影响   总被引:1,自引:1,他引:0  
【目的】获得华北地区日光温室冬春茬番茄优质高产滴灌灌溉制度。【方法】采用田间试验的方法,布置了7个不同土壤基质势阈值的试验,在番茄开花坐果期和结果期分别控制滴头正下方20 cm深度土壤基质势阈值在-15kPa和-15 kPa(S1)、-15 kPa和-30 kPa(S2)、-15 kPa和-45 kPa(S3)、-25 kPa和-25 kPa(S4)、-30 kPa和-15 kPa(S5)、-30 kPa和-30 kPa(S6)以及-30 kPa和-45 kPa(S7),研究了番茄生育期内土壤基质势动态调控对番茄生长、果实品质、耗水量和水分利用效率等的影响。【结果】在试验控制的土壤基质势范围内,①在番茄开花坐果期,番茄株高和茎粗均随土壤基质势阈值的升高而增加,进入结果期后不同土壤基质势处理下的番茄株高差异不明显,但茎粗仍随着土壤基质势阈值的升高而增加;②开花坐果期不同土壤基质势处理下的叶片SPAD值(相对叶绿素量)无显著差异,但结果期不同处理叶片SPAD值差异明显,表现为开花坐果期土壤基质势阈值高于低处理(S5、S6和S7)的叶片SPAD值;③对于开花坐果期土壤基质势阈值较低的处理,其畸形果率低、果实可溶性固形物量高,并且随着结果期土壤基质势的降低,畸形果率呈降低趋势,果实可溶性固形物量呈升高趋势;④番茄产量随着结果期土壤基质势阈值的降低而升高,-45 kPa处理番茄的产量最高;⑤随着整个生育期土壤基质势阈值的升高,番茄灌水量和耗水量显著增加,灌溉水利用效率和水分利用效率显著降低。【结论】综合考虑番茄产量、果实品质、灌溉水利用效率和水分利用效率等,华北地区日光温室秋冬茬番茄高产优质高水分利用效率的土壤基质势阈值为开花坐果期-30 kPa、结果期-45 kPa。  相似文献   

11.
膜下滴灌技术是干旱农业区高效节水灌溉的重要手段,以玛纳斯河流域石河子试验站实测数据为基础,运用HYDRUS-2D模型对1膜4行方式下新疆棉田的土壤水运动进行了二维模拟,探讨膜下滴灌在1膜4行覆膜方式下土壤水平衡状况。结果表明,1膜4行覆膜方式下的膜下滴灌技术使新疆棉田无效水分蒸发量以及深层渗漏量大大减少,数值模拟方法可较好地模拟新疆棉田的土壤水平衡状态。上述研究可为宏观尺度上的膜下滴灌模拟与研究提供借鉴,同时对保障干旱区农业生产也有积极作用。  相似文献   

12.
离心机法测定土壤水分特征曲线中的收缩特性   总被引:1,自引:0,他引:1  
为了探明土壤在离心力作用下的收缩规律,开展了离心机法测定土壤水分特征曲线试验.砂壤土和黏壤土分别设定3个初始容重,以离心机法测定的数据为基础,研究了离心力变化下的土壤收缩规律,并通过van Genuchten-Mualem(VG-M)模型对2种情景模式(考虑容重变化和未考虑容重变化)下所测定的土壤水分特征曲线进行拟合,并以此估算所得的土壤水力特性参数对沟灌二维水分运动特性进行了数值模拟,同时结合室内试验对比分析了参数的合理性.结果表明,离心机转速增大,土壤含水率降低,容重随之增大,当吸力为7 000 cm时,砂壤土和黏壤土的容重分别近于1.81和1.79 g/cm3;基于土壤收缩特征曲线,供试土壤收缩过程可采用三直线模型进行表征,但各收缩段的吸力范围存在差异;与未考虑容重变化所得VG-M模型中的参数值相比,考虑土壤容重变化所得的滞留含水率θr和进气吸力值倒数a均增大,但形状系数n均减小;以考虑土壤容重变化所得VG-M参数为基础进行沟灌二维水分运动数值模拟,其入渗水量、湿润锋运移距离(垂直和水平)与实测值的误差绝对值均值分别为5.8%,3.0%和2.6%,较未考虑容重变化时精度分别提高了39.2%,57.2%和52.9%.因此离心机法测定土壤水分特征曲线的过程中需考虑土壤容重的变化,且以此获得的参数能够较为显著地提高数值模拟精度.  相似文献   

13.
为了使灌溉预报及自动控制系统简单、投资成本低且便于推广应用,设计了一套基于土壤基质势的灌溉预报及自动控制系统.通过利用电接点压力表测量负压计中的压力,设定不同作物、不同生育期、不同灌水方式的灌水下限和上限.当土壤基质势达到灌水上下限时,通过电接点压力表和自动控制电路,实现灌溉预报和自动控制.灌水过程中,通过单片机、远传水表和液晶显示屏,可以实现灌水时间、灌水量和灌水次数的记录与存储.经室内试验验证表明基于土壤基质势的灌溉预报及自动控制系统合理可行,对于粉砂壤土可以将灌水上限的土壤基质势设置为-8 kPa左右.  相似文献   

14.
主要研究了华北地区滴灌灌溉方式不同土壤基质势(滴头正下方0.2 m深度处土壤基质势下限控制在-10~-50 kPa)对茄子生长和水分利用效率的影响。随着滴头正下方0.2 m深度处土壤基质势控制的降低,茄子整个生育期的灌溉水量、累计耗水量明显减少,而水分利用效率和灌溉水利用效率随着土壤基质势控制的降低明显升高;不同基质势处理对不同生育期茄子平均株高无明显影响。连续3年研究表明,不同土壤基质势处理茄子总产量及其产量形成因子均无显著差异。由此可知,在华北地区露地栽培条件下,滴灌种植茄子,在茄子缓苗后,可以通过控制滴头正下方0.2 m深度处土壤基质势在-50 kPa以上来指导灌溉。  相似文献   

15.
研究了华北半湿润区滴灌条件下不同土壤基质势对露地栽培豇豆产量和灌溉水利用效率的影响。试验共有5个处理,分别控制滴头正下方0.2 m深度处土壤基质势下限高于-10、-20、-30、-40和-50 kPa。研究分析发现,土壤基质势对豇豆的产量没有明显的影响,并且随着土壤基质势控制的降低,豇豆整个生育期的灌水量明显降低,灌溉水利用效率显著升高。因此,在华北半湿润区,在保证豇豆安全度过苗期之后,可以通过控制滴头正下方0.2 m深度处土壤基质势下限高于-50 kPa来制定豇豆的滴灌灌溉计划。  相似文献   

16.
Subsurface drip irrigation systems, compared to other irrigation systems, enhance the delivery of water and nutrients directly into the root zone. However, in light-textured soils, certain quantities of water may percolate below the root zone due to the subsurface position of drip lines and/or poor management of irrigation systems. The main objective of this paper is to evaluate three technologies to enhance a spatial distribution of water and solutes in the root zone and to limit downward leaching. The three technologies include (a) a physical barrier, (b) a dual-drip system with concurrent irrigation, and (c) a dual-drip system with sequential irrigation. To achieve this objective, we performed computer simulations using the HYDRUS (2D/3D) software for both bare and vegetated soils. The results indicate that the physical barrier is more efficient than dual-drip systems in enhancing the water distribution in the root zone while preventing downward leaching. On the other hand, the dual-drip system improves water distribution in sandy soils. Additionally, the dual-drip system with sequential irrigation, followed by the dual-drip system with concurrent irrigation, is the most efficient in limiting downward leaching of solutes.  相似文献   

17.
研究了华北半湿润地区滴灌条件下,打顶与不打顶农艺措施以及不同土壤基质势(滴头正下方0.2 m深度处土壤基质势下限控制在-10~-50 kPa)对番茄生长和水分利用效率的影响。研究发现,与打顶农艺措施相比,不打顶条件下番茄的平均株高、生育期累计灌水量和追肥量都相对较高,而产量和灌溉水利用效率却较低。二种农艺管理措施下,随着滴头正下方0.2 m深度处土壤基质势控制的降低,番茄整个生育期的灌水量、累计耗水量明显降低,而水分利用效率和灌溉水利用效率明显升高。由此可知,在我国华北半湿润地区露地栽培条件下,打顶农艺管理措施更有利于番茄的高产和水分利用效率的提高,并且滴灌条件下在番茄安全缓苗后,可以通过控制滴头正下方0.2 m深度处土壤基质势在-50 kPa以上来指导灌溉。  相似文献   

18.
为了摸清新疆含砾石复杂土壤条件下土壤水分运动规律,优化葡萄滴灌系统设计中的各项设计参数及合理布设,该文通过田间交汇试验确定合适的滴头间距为30 cm,并借助Hydrus-2D数值模型确定了土壤水力参数,同时运用该数值模型模拟了不同滴头流量和滴灌带水平间距布设形式下地表滴灌土壤水分分布特征。根据土壤湿润体特征结合葡萄根系分布规律,确定新疆砾石地葡萄滴灌系统合理的滴头流量为2.5~3.0 L/h,滴灌带水平间距为60 cm。该结果可为新疆砾石地复杂土壤葡萄滴灌系统的科学设计和田间合理布设提供参考。  相似文献   

19.
Numerical evaluation of subsurface trickle irrigation with brackish water   总被引:1,自引:0,他引:1  
In this study, an assessment for a proposed irrigation system in the El-Salam Canal cultivated land, Egypt, was conducted. A numerical model (HYDRUS-2D/3D) was applied to investigate the effect of irrigation amount, frequency, and emitter depth on the wetted soil volume, soil salinity levels, and deep percolation under subsurface trickle irrigation (SDI) of tomato growing with brackish irrigation water in three different soil types. The simulations indicated that lower irrigation frequency increased the wetted soil volume without significant increase in water percolates below the plant roots. Deep percolation decreased as the amount of irrigation water and emitter depth decreased. With the same amount of irrigation water, the volume of leached soil was larger at lower irrigation frequency. The salinity of irrigation water under SDI with shallow emitter depth did not show any significant effect on increasing the soil salinity above tomato crop salt tolerance. Based on the results, it appears that the use of SDI with brackish irrigation water is an effective method for growing tomato crop in El-Salam Canal cultivated land especially with shallow emitter depth.  相似文献   

20.
[目的]制定砂质土壤马铃薯的喷灌灌溉制度。[方法]选择“夏波蒂”(抗旱性弱)和“费乌瑞它”(抗旱性强)2种不同抗旱能力的马铃薯品种,通过2a的田间试验,研究了不同土壤基质势阈值对土壤水分状况、马铃薯产量与灌溉水利用效率等的影响,以确定马铃薯适宜的土壤基质势阈值来指导灌溉。2012年布置了3个处理,在马铃薯定苗后分别控制垄中心20cm深度处土壤基质势阈值为-20、-30和-40kPa,2013年增加了1个-10kPa处理。[结果]大型喷灌机灌溉条件下监控垄中心20cm深度处土壤基质势可较好地调控马铃薯农田的土壤水分状况;①指导灌溉的土壤基质势阈值越高,马铃薯生育期内0~30cm深度平均土壤基质势越高,并且变化幅度越平缓;土壤基质势阈值越低,0~30cm深度平均土壤基质势越低,且变化越剧烈;40cm深度以下土壤水分状况与土壤基质势阈值的关系不明显。②不同抗旱能力马铃薯品种的产量都随着土壤基质势阈值的降低而线性降低,当阈值低于-15.8 kPa时,土壤基质势每降低1kPa,产量降低1.8%,且主要表现在大薯(W≥250g)和中薯(150g≤ W<250g)质量的降低,单株结薯个数基本不受影响。③灌溉水利用效率随着土壤基质势的降低而线性增加,表现为土壤基质势每降低1 kPa,灌溉水利用效率升高1.3%。[结论]砂质土壤大型喷灌机灌溉或类似农业生产条件下,推荐监控垄中心20cm深度处土壤基质势来指导施肥灌溉,并且土壤基质势阈值建议为-15.8 kPa左右,在淀粉积累期之后可考虑适当地降低土壤基质势阈值,以获得高产和较高的灌溉水利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号