首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exogenous prostaglandin F2 alpha promotes uterine involution in the cow   总被引:1,自引:0,他引:1  
Three newly delivered dairy cows were given prostaglandin F during the immediate postpartum period. PGF was administered from day 3–13 post partum in doses of 25 mg twice daily. Endogenous release of PGF and progesterone was studied in blood plasma during the experimental period. Rectal examination of the uterus was performed every second day in order to establish the end of uterine involution. Uterine involution in the three cows was completed days 16, 23 and 20, respectively. These figures are to be compared with earlier investigations of uterine involution times, which show about 27 days. It was concluded that PGF had a positive effect on the uterine muscular tone.Key words: uterine involution, prostaglandin F, bovine  相似文献   

2.
Over the past few decades, the luteolytic dose of prostaglandin F (PGF) and its analogs, used to synchronize estrus for fixed-time insemination in dairy cattle, have remained unchanged. Given the beneficial effects of PGF on a young corpus luteum and on multiple ovulations in a fixed-time insemination protocol, and its therapeutic abortive effects on multiple ovulations in pregnant cows, we propose the use of a double PGF dose or two PGF treatments 24 hours apart. Ultrasonography procedures serve to identify luteal structures and may therefore help to determine the best PGF dose to improve the fertility of high-producing dairy cows.  相似文献   

3.
Since the 1970s, luteolytic doses used for synchronizing estrus in dairy cattle have remained unchanged. This study aimed to evaluate the dose-response effect of prostaglandin F (PGF), which is used for synchronizing estrus, and subsequent fertility in cows with two or more corpora lutea (CL). The study population consisted of 1,683 cows with a single CL (1CL), 501 cows with multiple CL receiving a single dose of PGF (2CL1), and 252 cows with multiple CL receiving a 1.5 × PGF dose (2CL1.5). Cows with a single CL (n = 1,245) showed estrus significantly (P < 0.01) earlier (3.01 ± 1.23 days; mean ± SD) than cows with multiple CL (n = 287; 3.33 ± 1.69 days). Using 1CL cows as reference, the odds ratio (OR) for the estrus response in 2CL1 cows was 0.13 (P < 0.0001), whereas the ORs for estrus response and pregnancy of 2CL1.5 cows were 1.8 (P = 0.0001) and 1.7 (P = 0.001), respectively. Based on the results for only the 2CL1 cows, the OR for the estrus response was 0.7 (P = 0.01) for cows producing ≥ 45 kg of milk at treatment, compared to the remaining cows producing < 45 kg of milk. Our results showed that the presence of multiple CL reduced the estrus response to that induced by a single PGF dose and milk production was inversely associated with this response, whereas an increased PGF dose improved the estrus response. Therefore, an increase in the standard PGF dose is recommended.  相似文献   

4.
Peripheral plasma levels of 15-keto-13,14-dihydro-PGF, progesterone, Cortisol, LH and prolactin were studied in 6 primiparous postpartum dairy cows. The cows were followed by hormone measurements and clinical examinations from parturition until pregnancy was established. Blood was collected 3 times per day. The cervix, uterus and ovaries were examined by rectal palpation at 6–10 days intervals. The cows were observed for signs of oestrus twice daily and were additionally teased with a bull to provoke standing heat.Four cows had a normal parturition and dropped their fetal membranes shortly afterwards. (NR group). The remaining 2 retained their fetal membranes for more than 24 h following parturition (RFM group). One out of 6 cows showed standing oestrus at the first ovulation, 4 animals were in oestrus at the second ovulation and all cows showed signs of oestrus at the third ovulation. Although the length of the first luteal phase varied from 9 to 22 days a corpus luteum was in all cases palpated. The secretion of progesterone during the first luteal phase was terminated by a PGF release.A significant difference in 15-keto-13,14-dihydro-PGF levels between the 2 groups was found on days 0–4 (2.39 vs 6.87 nmol/1 at Ρ < 0.06). Postpartum prostaglandin F release as reflected by the level of 15-keto-13,14-dihydro-PGF lasted shorter in the NR group than in the RFM group (15–17 vs 21 days). Significant positive correlations between 15-keto-13,14-dihydro-PGF and Cortisol as well as between prolactin and Cortisol during the first 24 days postpartum were noted only in cows having normal parturition. The most pronounced daily prolactin variations occurred during the second luteal phase (NR group), when a significant difference between the times 8.00, 12.00 and 15.00 was recorded (14.7, 31.5 and 19.7 μg/l, respectively). Moreover, a partial negative correlation between log value of prolactin and arithmetical value of LH was found in these cows only during the first luteal phase after parturition.  相似文献   

5.
Plasma concentrations of oestradiol-17ß, progesterone, 15-keto–dihydro–PGF and luteinizing hormone (LH) were monitored in llamas and alpacas after mating with an intact male. Concentrations of LH and PGF metabolite were high immediately after copulation. Ovulation occurred in 92% of the animals. The first significant increases in progesterone were recorded on day 4 after mating. In non-pregnant animals the lifespan of the corpus luteum was estimated to be 8–9 days. Luteolysis occurred in association with the release of PGF. In pregnant animals, a transient decrease in progesterone concentrations was observed between days 8 and 18 in both species. No significant changes in PGF secretion were registered during this period. Oes– tradiol–17ß concentrations were high on the day of mating, declined to low values on day 4, and started to increase again on day 8. Peak values after luteolysis in non-pregnant animals were significantly higher than those registered in pregnant ones. Furthermore, concentrations of oestradiol-17ß were elevated for a longer period in non–pregnant than in pregnant animals. The results suggest that progesterone from the corpus luteum exerts a negative influence on follicular activity in pregnant animals by reducing oes– tradiol-17ß secretion.  相似文献   

6.
Fifteen mated bitches were used to study the effects of prostaglandin F on ovarian endocrine function during the early and midluteal phase. Five dogs were kept as controls, five were given 250 μg/kg prostaglandin F twice daily between the first and fifth day of metestrus, and five were similarly treated with prostaglandin F between 31 and 35 days of metestrus. Function of corpora lutea was monitored by measuring serum progesterone concentrations during the first 45 days of gestation.

Dogs treated with prostaglandin F during the early luteal phase had progesterone concentrations similar to controls and pregnancies were undisturbed in both groups. A dramatic decrease in serum progesterone concentration and abortion resulted after prostaglandin F administration at midpregnancy.

These results indicate that prostaglandin F was not luteolytic during the early luteal phase and was therefore ineffective for preventing pregnancy at that time. However, at the dosage and frequency used in this study, prostaglandin F was luteolytic and abortifacient at midgestation.

  相似文献   

7.
The effect of intrauterine iodine infusion on estrous cycle length was studied in four cows. The infusions were performed at various times of the estrous cycle: early, middle, late, and during luteolysis. Blood samples were drawn every third hour from the jugular vein. Progesterone and 15-keto-13,14-dihydroprostaglandin F (the main metabolite of PGF) were measured to monitor luteal activity and prostaglandin release. No release of prostaglandins was observed immediately following intrauterine infusion. Infusion in two cows on day 5 of the estrous cycle resulted in prostaglandin release after 54 and 69 hrs., respectively, followed by luteal regression and the occurrence of estrus at approx. five days after infusion. Infusions performed on days 11 or 12 resulted in prostaglandin release after 147 and 120 hrs., respectively, followed by luteolysis and heat after a 19 day estrous cycle. Infusion in two cows at days 16 and 17 resulted in prostaglandin release after 117 hrs. in both animals. One cycle was prolonged whereas the other cycle was normal in duration. One cow infused on day 20 following the occurrence of the first prostaglandin surge had a cycle length of 26 days, whereas another cow infused on day 20 was not affected because luteolysis was essentially complete by the time of infusion. One animal infused on day 5 did not respond to the iodine infusion. In this animal, however, the corpus luteum was not completely developed prior to the infusion.From this study it can be concluded: 1) intrauterine iodine infusions performed after the development of a progesterone secreting corpus luteum result in prostaglandin release within three to six days with the subsequent occurrence of luteolysis; 2) luteolysis wras in all cases observed in connection with prostaglandin F release of the same order of magnitude and duration as during normal luteolysis. kw|Keywords|k]prostaglandin release; k]progesterone; k]cow; k]es trous cycle; k]iodine infusion  相似文献   

8.
Intravenous administration of 2.6–3.3 µg/kg of an endotoxin from Salmonella typhimurium to goats caused a marked drop in plasma Ca levels associated with an increase of prostaglandin synthesis and release measured as peripheral plasma levels of 15-keto-13,14-dihydro-PGF2 α. This is one of the main metabolites of PGF2 α, but also PGE2 α is partly metabolised to this compound. The infusion of 10 mg of PGF2 α lowered plasma Ca levels. Ten mg of PGE2 did not change Ca concentrations significantly.  相似文献   

9.
The purpose of the present research was to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α-amylase, α-manosidase, β-N-acetyloglucosaminidase, β-glucuronidase, and β-galactosidase in the cervical mucus of cows during spontaneous and induced estrus. Friesian cows (n = 106) were assigned to 4 groups: 1) no treatment; 2) progesterone releasing intervaginal device (PRID) for 12 days plus pregnant mare serum gonadotrophin (PMSG) at the removal of the PRID; 3) PGF2α2 doses 11 days apart; and 4) PRID for 7 days plus PGF2α 1 dose, 24 hours before removal of the PRID. Fourteen cows were excluded from the trial because of an inadequate quantity of cervical mucus collected or a lost PRID. The cows from the 3 induced estrus groups were artificially inseminated (AI) twice, while those with spontaneous estrus received only a single AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. The results are summarized as follows: 1) ALP and α-amylase activity for spontaneous estrus were similar to those for induced estrus; 2) LDH activity levels during spontaneous estrus were significantly lower (P < 0.001) than that in the P4 and P4+PGF2α induced estrus groups; and 3) glycosidases' activity was significantly lower (P < 0.001) in the spontaneous estrus group than that in the induced estrous groups. In conclusion, the activity of most enzymes in the cervical mucus of cows, in the present study, was significantly different between the spontaneous and the induced estrus groups.  相似文献   

10.
The effect of excess arachidonic acid or oxytocin on equine endometrial prostaglandin F(PGF) synthesis was measured in vitro under physiologic and pathophysiologic conditions. Endometrial tissues obtained by uterine biopsy at 5, 10, 12, 14, 16 and 20 days post-ovulation from cycling mares, after 0, 2, 4, 6, 8, 10, 12, 14 or 16 days of progesterone (P4) in ovariectomized mares and at 30 days postovulation in mares undergoing spontaneously prolonged corpus luteum (SPCL) activity were incubated in vitro with and without added arachidonic acid or oxytocin. Endometrial PGF content and synthetic capacities were determined by radioimmunoassay. PGF production increased significantly at Days 12–16. Arachidonic acid did not alter this effect. Oxytocin stimulated additional PGF production on Days 5, 16, and 20. SPCL tissues had minimal PGF production which was increased significantly by arachidonic acid but not oxytocin. PGF synthesis in ovariectomized P4 treated mares was minimal and did not vary with length of progesterone exposure or addition of arachidonic acid. These results suggest that a) oxytocin may play a role in luteolysis in the equine, b) although arachidonic acid appears not to be limiting to PGF2α production under normal physiological conditions, its absence may play a role in pathophysiological conditions, c) factors in addition to progesterone and arachidonic acid are required to initiate PGF synthesis in the mare.  相似文献   

11.
Prostaglandin F (PGF) and its analogs are used to induce luteolysis in estrus synchronization programs to terminate unwanted pregnancies or to promote ovulation in certain cow subpopulations. In the past few decades, the luteolytic dose of PGF has remained unchanged. This review explores the clinical implications of increasing the standard dose for these applications in high-producing dairy cows. Ultrasonography may assist in selecting the most appropriate PGF dose and improve the results. A reference has been used for PGF for promoting ovulation in herds showing poor reproductive performance.  相似文献   

12.
Three cows of the Swedish Red and White Breed (SRB) were used in the experiment. Cow no. 1 pregnant for 247 days, was given 20 mg dexamethasone twice with an interval of 48 hrs. Cows nos. 2 and 3, each pregnant for 254 days, received 20 mg of dexamethasone twice with an interval of 24 hrs. The cows delivered normal living calves 153, 138 and 137 hrs., respectively, after the second injection of dexamethasone. Blood samples were drawn from the jugular vein every third hour during the experimental period and the samples were analyzed for estrone, progesterone and 15-keto-13,14-dihydroprostaglandin F2α. Following the dexamethasone injections there was a continuous increase in the blood plasma levels of estrone followed by a sharp decrease in conjunction with parturition. The blood plasma level of progesterone showed a slow but continuous decrease until about 24 hrs. before delivery when a marked drop occurred. The levels of the prostaglandin metabolite increased gradually until about 24 hrs. prior to delivery. This was followed by an abrupt rise, and high levels of the prostaglandin metabolite were recorded for up to four days following parturition. It is concluded that the estrone increase preceded that of the prostaglandin metabolite and that the final drop in the progesterone was synchronous with the final rise of the prostaglandin metabolite level.  相似文献   

13.
Holstein heifers were randomly allotted by weight, age and body condition score to one of three treatments to test the hypothesis that GnRH administration concurrent with PGF injection would advance follicle or corpus luteum (CL) development parallel to an induced luteolysis of the pre-existing CL. Heifers in the control group (n = 14) received two treatments of PGF(25 mg, im) given 10 days apart. Groups 2 (n = 14) and 3 (n = 14) received an additional treatment of GnRH (100 μg, im) after the first and second PGF respectively. Estrus detection began immediately after PGF and continued for 80 h. Blood sampling was initiated 7 days prior to the first PGF (day − 7) and continued on days 0, 7, 10 (prior to the second PGF), 17 and 24. Heifers were artificially inseminated after the second PGF and pregnancy diagnosed at 60 days. There was a trend (P < .10) toward a lower estrus response in group 3 when compared to the other groups. Pregnant heifers in group 2 had lower progesterone (0.44 ± 0.09 vs. 1.72 ± 0.56 ng/ml) a week after the second PGF than the non-pregnant animals in that group (P < .05). Similar results were observed in the control group but only within the responding heifers (0.61 ± 0.08 vs. 0.93 ± 0.03 ng/ml; P < .05). Progesterone in heifers in group 2 remained high on day 0, 7, and 10 (1.48 ± 0.37, 1.23 ± 0.39, 1.96 ± 0.36 ng/ml) in spite of the treatment with PGF. This data suggest that administration of GnRH following PGF alters bovine luteal and/or follicular cell function.  相似文献   

14.
We studied the effects of gonadotrophins and prostaglandin (PG) F on ovulation in gilts. Twenty-eight gilts were induced to ovulate using 750 IU pregnant mares serum gonadotrophin (PMSG) and 500 IU human chorionic gonadotrophin (hCG), administered 72 h apart. At 34 and 36 h after hCG, gilts received injections of either 500 μg or 175 μg PGF (cloprostenol), or had no injections. Laparotomies were performed at 36 h (cloprostenol gilts) or 38 h (controls) after hCG injection. The ovaries were examined and the proportion of preovulatory follicles that had ovulated (ovulation percent) was determined at 30 min intervals for up to 6 h. The number of gilts in which ovulation was initiated and the ovulation percent increased (p<0.001) with time, but was not affected by treatment. Many medium sized follicles (≤6 mm) were also observed to ovulate, or to exhibit progressive luteinization without overt ovulation, during the surgical period. A discrepancy between numbers of preovulatory follicles and corpora lutea suggests that luteal counts may not be an accurate assessment of ovulation rate following gonadotrophic stimulation.  相似文献   

15.
16.
The objective of this study was to test the efficacy of a compounded long-acting progesterone formulation (BioRelease P4 LA 150; BETPHARM, Lexington, KY) containing 150 mg progesterone/ml for pregnancy maintenance in mares after prostaglandin (PG) F-induced luteolysis. On day 18 of gestation, mares were randomly assigned to one of four groups (n = 7/group): (1) saline-treated control (Saline); (2) PGF-treated control (PGF); (3) PGF- and Regu-Mate-treated (Regu-Mate); and (4) PGF- and BioRelease P4 LA 150-treated (BioRelease). On day 18, Saline mares received 1 ml sterile saline IM, whereas PGF, Regu-Mate, and BioRelease mares received 250 μg cloprostenol IM. Beginning on day 18, Regu-Mate mares received 10 ml Regu-Mate orally once daily and BioRelease mares received 10 ml BioRelease P4 LA 150 containing 150 mg/ml progesterone IM once every 7 days; treatments were continued until day 45 or until pregnancy loss occurred. Pregnancy diagnosis was performed every 3 days between days 18 and 45 (or until pregnancy loss). Pregnancy loss was defined as complete absence of a discernible embryonic vesicle as determined with transrectal ultrasonography. Pregnancy loss rates between days 18 and 45 were: Saline, 1/7; PGF, 7/7; Regu-Mate, 1/7; and BioRelease, 0/7. The pregnancy loss rate was higher (P < .01) in PGF-treated control mares compared with the other groups. There were no differences (P > .1) in pregnancy loss rates among the saline-treated control, Regu-Mate-treated, and BioRelease P4 LA 150-treated mares. These results indicate that intramuscular administration of BioRelease P4 LA 150 containing a total of 1.5 g progesterone every 7 days provided a sufficient level of progesterone to maintain pregnancy between days 18 and 45 of gestation in mares that lacked an endogenous source of progesterone; therefore, this long-acting formulation of progesterone appears to be an efficacious and suitable alternative to currently available progesterone formulations that require daily administration.  相似文献   

17.
The aim of this study was to examine whether increased frequency of luteinizing hormone (LH) pulses influences luteal progesterone (P4) secretion by measuring progesterone concentrations at the secreted (caudal vena cava) and circulating levels (jugular vein) in lactating dairy cows. Cows received six intravenous administrations of 2.5 μg of GnRH (gonadorelin acetate, n=4) or 2 ml saline (n=3) at 1-h intervals on 12.4 ± 0.4 (mean ± SE) days after ovulation. Blood samples were collected from the caudal vena cava and jugular vein every 12 min for 12 h (6 h before and after treatment). During the 6 h after treatment, frequency of LH pulses (5.3 ± 0.3 and 3.0 ± 0.0 pulses/6 h) and mean LH concentration (0.50 ± 0.06 and 0.38 ± 0.05 ng/ml) were greater (P<0.05) in GnRH-treated cows than in saline-treated cows. Mean P4 concentration and amplitude of P4 pulses in the caudal vena cava during the 6 h after treatment were greater (P<0.05) in GnRH-treated cows than in saline-treated cows, but the frequency of P4 pulses was not different between the groups. Mean P4 concentration in the jugular vein during the 6 h after treatment was also higher (P<0.05) in GnRH-treated cows than in saline-treated cows (7.0 ± 1.3 and 5.4 ± 0.9 ng/ml). These results indicate that the increased frequency of LH pulses stimulates progesterone secretion from the functional corpus luteum and brings about higher P4 concentrations in the circulating blood in lactating dairy cows.  相似文献   

18.
The aim of the present study was to examine the effect of the somatic cell count (SCC) in milk on reproductive performance, such as pregnancy status in the prepartum period and ovarian function in the postpartum period, in dairy cows. Blood samples were collected every week from one month prepartum to parturition in order to measure the concentrations of 13,14-dihydro-15-keto-PGF (PGFM), estrone sulfate (E1S) and progesterone. Milk samples were collected three times per week in both the prepartum (for one month before the dry period) and postpartum periods (for 3 months immediately after parturition) to measure the SCC. Progesterone was also determined in the whole milk of postpartum cows to define the day of the first ovulation. In the prepartum period, the maximum SCC negatively correlated with the pregnancy period (r = –0.77), but not the calf birth weight. Positive and negative correlations were observed between the average SCC and PGFM or progesterone concentrations in plasma, respectively (r = 0.84 or –0.92, respectively), at 39 weeks of pregnancy. In the postpartum period, a correlation was observed between the day of the first ovulation and both the average and maximum SCC (r = –0.74 and –0.75, respectively), whereas days open was not related to the SCC. These results suggest that a high SCC in the prepartum period may advance parturition by increasing PGF and decreasing progesterone and that the first ovulation in the postpartum period was affected by a high SCC.  相似文献   

19.
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH‐1; day 7, prostaglandin (PG) F; day 9, GnRH‐2] and 103 cows were inseminated 12 h after GnRH‐2. Information on parity, days in milk at GnRH‐1, body condition, milk yield, exposure to heat stress, pre‐synchronization with PGF and the use of progesterone insert from GnRH‐1 to PGF was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH‐1, multiple ovulated to GnRH‐1, ovulated before GnRH‐2, ovulated to GnRH‐2, multiple ovulated to GnRH‐2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH‐1 was greater in cows without a CL at GnRH‐1, cows with follicles >19 mm and cows not pre‐synchronized with PGF 14 days before GnRH‐1. Multiple ovulations to GnRH‐1 increased in cows without CL at GnRH‐1 and cows with follicles ≤19 mm at GnRH‐1. Ovulation before GnRH‐2 was greater in cows without CL at PGF. Ovulation to GnRH‐2 increased in cows that received a progesterone insert, cows with a CL at GnRH‐1, cows with follicles not regressing from the PGF to GnRH‐2, cows with larger follicles at GnRH‐2, cows that ovulated to GnRH‐1 and cows not pre‐synchronized. Multiple ovulations after GnRH‐2 increased in cows with no CL at GnRH‐1, multiparous cows and cows that multiple ovulated to GnRH‐1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH‐2. Strategies that optimize ovulation to GnRH‐2, such as increased ovulation to GnRH‐1, should improve response to the Ovsynch protocol.  相似文献   

20.
This study compared the responses shown by lactating dairy cows to four different P4-based protocols for AI at estrus. Cows with no estrous signs 96 h after progesterone intravaginal device (PRID) removal were subjected to fixed-time AI (FTAI), and their data were also included in the study. In Experiment I, follicular/luteal and endometrial dynamics were assessed every 12 h from the beginning of treatment until AI. The estrous response was examined in Experiment II, and fertility was assessed in both experiments. The protocols consisted of a PRID fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone (GnRH), equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I (40 cows), animals receiving GnRH at the start of treatment showed a significantly higher ovulation rate during the PRID insertion period while estrus was delayed. In Experiment II (351 cows), according to the odds ratios, cows showing luteal activity at the time of treatment were less likely to show estrus than cows with no signs of luteal activity. Treatment affected the estrous response and the interval from PRID removal to estrus but did not affect conception rates 28–34 days post AI. Primiparous cows displayed a better estrous response than multiparous cows. Our findings reveal acceptable results of 5-day P4-based protocols for AI at estrus in high-producing dairy cows. Time from treatment to estrus emerged as a good guide for FTAI after a 5-day P4-based synchronization protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号