首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a controlled environment (15/10°C) (day/night) container experiment on winter wheat (cv. Avalon), eyespot incidence (percentage of plants affected) and number of leaf sheaths penetrated after 6 weeks increased with inoculum concentration (102−106 conidia mL−1) of Oculimacula yallundae (OY) or Oculimacula acuformis (OA), but there was no difference between the two species. In an outdoor container experiment, seedlings inoculated with OY 2 weeks after sowing had a greater incidence of eyespot than those inoculated with OA, when assessed 7 weeks after inoculation. Seedlings inoculated with OA at 10 or 20 weeks after sowing developed more severe eyespot by maturity than those inoculated with OY. In an experiment at 15/10°C with seedlings inoculated with OY + OA 2 weeks after sowing, more leaf sheaths were penetrated by OY (3·0 per plant) than OA (2·3 per plant) 6 weeks after inoculation. Field experiments with winter wheat consistently showed leaf sheath production, leaf sheath death, and number of leaf sheaths infected or penetrated by OA or OY were related linearly to thermal time (°C days) after sowing. Depending on cultivar, season and sample, a new leaf sheath was produced in 116–216°C days; a leaf sheath died in 221–350°C days; and infection of a new leaf sheath occurred in 129–389°C days. The mean number of living leaf sheaths infected differed between samples, cultivars and seasons for both OY and OA. Regression analysis of the 1985/86 data suggested that OY progressed more rapidly than OA through the leaf sheaths, and that both the pathogens progressed more rapidly than the rate of leaf sheath death, but more slowly than the rate at which leaf sheaths were produced. It also suggested that OA progressed more slowly than the rate at which leaf sheaths died in 1987/88, but OY did not.  相似文献   

2.
Experiments are described in which plants from six different populations of the outbreeding annual weed Tripleitrospermum inodorum were grown with barley in field plots and sprayed with 4-chloro-2-melhyIphenoxyacetic acid (MCPA) at a number of doses. The populations showed significant differences in reduction of weight, the most resistant population having an ED50 of 181 ± 36·9 mg/m2 a.e. MCPA, 2·49 limes as great as the ED50 of the least resistant population. In a second experiment in which plants from these two populations were again grown with barley in field plots and sprayed with several doses of MCPA at three different stages of growth, their resistance to MCPA was found to differ consistently at all three stages of growth, the more resistant population having a mean LD50 of 1103 ± 161·5 mg/m2 a.e. MCPA, 2·09 times as great as the mean LD50 of the less resistant population. The populations were similar in other respects. The differences in the spraying histories of the two populations were consistent with the supposition that the differences in resistance to MCPA had resulted from natural selection for MCPA resistance in the more intensively sprayed population, but other processes may also have been involved.  相似文献   

3.
The ascomycete pathogen Ramularia collo-cygni causes Ramularia leaf spot (RLS) on barley. Although R. collo-cygni is considerd an emerging disease of barley, little is known about genetic diversity or population genetic structure of this pathogen. We applied a set of polymorphic AFLP (Amplified Fragment Length Polymorphism) markers to investigate population genetic structure in two Northern European populations of R. collo-cygni. The distribution of AFLP alleles revealed low levels of population subdivision and high levels of genetic diversity at both locations. Our analyses included 87 isolates and of these 84 showed a unique genotype pattern. The genetic structure of populations in Scotland and Denmark is highly similar and we find no evidence of population sub-division. An analysis of molecular variance was used to show that 86 % of the variance is attributable to within field genetic variance. In spite of the high levels of genetic and genotypic diversity in the R. collo-cygni populations, we find significant evidence of linkage disequilibrium among the AFLP alleles using a multilocus analysis. We propose that the high levels of genotypic diversity and the lack of population differentiation result from considerable levels of gene flow between populations most likely mediated by seed borne dispersal of inoculum.  相似文献   

4.
Elicitors derived from the cell wall of fungi are shown to be active in eliciting resistance in plants against a wide range of pathogens. In the present study carbohydrate components from the autoclaved spore cell wall ofAspergillus niger were prepared as aqueous suspensions and tested for defense response in pearl millet (Pennisetum glaucum (L.) R.Br.) against the oomycetous downy mildew pathogenSclerospora graminicola (Sacc.) Schroet. The aqueous suspension derived from the spore cell wall ofA. niger was used as a seed soak treatment at concentrations of 0.25, 0.5, 1.0, 1.5 and 2.0 mg ml−1 for time intervals of 3, 6, 9 and 12 h. The concentration of 0.5 mg ml−1 for a 6 h soaking period offered 94% seed germination and seedling vigor index increased to 1526. The seed germination and the seedling vigor were significantly higher than the untreated check. Spore cell wall suspension as seed treatment at a concentration of 0.5 mg ml−1 required a 3-day time interval to provide 67% protection against downy mildew. Histological and biochemical studies were conducted to elucidate the mechanism of defense response in treated seedlings uponS. graminicola infection. Resistance host response was detected in the form of lignin and callose deposition in the epidermal cell wall of pearl millet seedlings, which is the site ofS. graminicola infection. A time course study showed rapid and localized deposition of lignin and callose in epidermal cell wall of carbohydrate components-treated pearl millet seedling coleoptiles. Increased levels of the defense-related enzyme peroxidase were detected in the treated seedlings. Peroxidase activity in elicitor-treated samples reached a peak at 8 h post-infection, which was 45% more than in their respective uninoculated control. Characterization of peroxidase isoforms by isoelectric focusing revealed 16 different isoforms, of which pI 6.8, 7.2 and 8.7 increased in elicitor-treated samples uponS. graminicola infection. http://www.phytoparasitica.org posting Nov. 14, 2005.  相似文献   

5.
The effect of the quinone outside inhibitors (QoI) azoxystrobin and pyraclostrobin on yields of winter wheat where QoI resistant Mycosphaerella graminicola isolates were dominant was investigated in field trials in 2006 and 2007. Pyraclostrobin significantly increased yields by 1·57 t ha?1 in 2006 and 0·89 t ha?1 in 2007 when compared to the untreated controls, while azoxystrobin only provided a significant increase of 1·28 t ha?1 in 2006. These yield increases were associated with reduction in septoria tritici blotch (STB) development as determined by weekly disease assessments over a 7 week interval. The effect of pyraclostrobin on STB was studied in controlled environment experiments using wheat seedlings inoculated with individual M. graminicola isolates. Pyraclostrobin significantly reduced STB symptoms by up to 62%, whether applied 48 h pre‐ or post‐ inoculation with resistant M. graminicola isolates containing the cytochrome b mutation G143A. Extremely limited disease (<1%) was observed on similarly treated seedlings inoculated with an intermediately resistant isolate containing the cytochrome b mutation F129L, while no disease was observed on seedlings inoculated with a wild‐type isolate. Germination studies of pycnidiospores of M. graminicola on water agar amended with azoxystrobin or pyraclostrobin showed that neither fungicide inhibited germination of spores of resistant isolates containing the mutation G143A. However, pyraclostrobin significantly reduced germ tube length by up to 46% when compared with the untreated controls. Although the QoIs can no longer be relied upon to provide effective M. graminicola control, this study provides an insight into why QoIs still provide limited STB disease control and yield increases even in situations of high QoI resistance.  相似文献   

6.
Several applications of the suppressive fungus MKP5111B, isolated from the phylloplane of rice plants, were tested in an effort to control rice blast disease. Three treatments with MKP5111B [living (Std), killed with liquid nitrogen (FR), and autoclaved (AC)] were either sprayed onto rice seedlings or mixed into seed-sown soil. Three weeks after spraying and 4 weeks after the soil application, we introduced Magnaporthe oryzae, the causal agent of rice blast, into our systems. The Std and FR treatments suppressed rice blast, but the AC treatment proved ineffective. Although a suppressive effect was seen on new leaves, no mycelium of MKP5111B was seen. The fungus thus may have induced a systemic resistance in the rice plants. A substance from MKP5111B, such as elicitor molecule(s) are likely responsible for the induced resistance.  相似文献   

7.
Polyclonal antibodies were raised against mycelium from the logarithmic growth phase of a shake culture of Ustilago nuda, and a double antibody sandwich enzyme-linked immunosorbent assay (ELISA) with biotinylated detection antibodies was developed. The detection limit of the assay was 15 ng total protein ml–1 for the homologous antigen and 50 ng ml–1 for a spore extract, respectively. Other species of Ustilago reacted with the antibodies. Cross-reactivity was highest with U. tritici. No signal was obtained with the tested isolates of Tilletia, Rhizoctonia, Pythium and Fusarium. With naturally infected barley seeds, the results of the ELISAs were always in good agreement with those obtained with the routinely used seed embryo test. However, when seeds grown from artificially inoculated florets were used, the ELISA indicated significantly higher infestation levels than the embryo test. Results of assays with halved seeds from the same lot showed that high amounts of mycelium were present in the non-embryo half. This and especially the relatively long duration of the assay suggested that the ELISA (as conducted here) may not be suitable as a routine method for analysing seed infection with U. nuda. With samples from barley seedlings grown from infected seeds the results of the immunoassay again corresponded very well with the infection level determined by staining of the seed embryo, irrespective of the mode of floret inoculation (natural or artificial). Potential fields of application of the ELISA include the early prediction of the efficacy of protection agents, e.g. in screenings for seed treatments, the elucidation of the biology of the fungus and characterisation of resistance mechanisms.  相似文献   

8.
The potential of the endemic fungus Cochliobolus lunatus as a biological control agent against Echinochloa crus-galli was investigated. Under appropriate conditions the fungus produced leaf necrosis on E. crus-galli resulting in death of young seedlings. However, plants with more than two leaves mostly recovered after some time. Bean, barley, maize, oat, rye, tomato and wheat were highly resistant to the fungus. In experiments in a climate room or in a glasshouse E. crus-galli with more than two leaves could effectively be controlled by C. lunatus in combination with a sub-lethal dosage of atrazine as low as 2.5 mg m?2 due to a positive interaction between fungus and herbicide.  相似文献   

9.
In growth cabinet experiments, the common phyllosphere yeastsSporobolomyces roseus andCryptococcus laurentii var.flavescens were sprayed as a mixture (11) onto the fourth leaves of maize plants (Zea mays) two-three days prior to inoculation withColletotrichum graminicola. In four experiments the average yeast population of the treated leaves at the time of pathogen inoculation varied between 5× 104 and 8× 105 cells cm–2 leaf, whereas on the untreated leaves the yeast population varied from <103 to 104 cells cm–2 leaf. The yeasts reduced lesion density and necrosis fromC. graminicola infection by approximately 50%. Contrary to findings with other necrotrophic pathogens, conidial germination, superficial mycelial growth and appressorium formation were not affected. Instead, the reduction of infection could only be explained by a reduced number of penetrations from the normally formed appressoria, a site of interaction not previously recorded.Samenvatting In klimaatkastexperimenten werden maisbladeren (4e blad) twee-drie dagen voor inoculatie metColletotrichum graminicola bespoten met een mengsel (11) van de algemeen voorkomende fyllosfeergistenSporobolomyces roseus enCryptococcus laurentii var.flavescens. In vier experimenten varieerde de gemiddelde gistpopulatie op de behandelde bladeren, op het moment van inoculatie met het pathogen, van 5× 104 tot 8× 105 cellen cm–2 blad, op de onbehandelde bladeren van <103 tot 104 cellen cm–2 blad. De gisten reduceerden de lesiedichtheid en het necrotisch bladoppervlak tengevolge van deC. graminicola infectie voor ongeveer 50%. De stadia in de ontwikkeling van andere necrotrofe pathogenen, die gewoonlijk gevoelig zijn voor antagonisme door gisten, zoals sporekieming, oppervlakkige myceliumgroei en vorming van appressoria, werden bijC. graminicola niet beïnvloed. De waargenomen reductie van infectie kon alleen verklaard worden door een remming van de penetratie vanuit normaal gevormde appressoria. Interactie in dit stadium van het infectieproces is nog niet eerder waargenomen.  相似文献   

10.
BACKGROUND: The present study investigated the effect of chitosan seed priming on the induction of disease resistance in pearl millet against downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroet. RESULTS: Pearl millet seeds were primed with chitosan at different concentrations: 0.5, 1.5, 2.5 and 3 g kg?1 seed. Of the different concentrations, 2.5 g kg?1 was found to be optimum, with enhanced seed germination of 99% and seedling vigour of 1782, whereas the untreated control recorded values of 87% and 1465 respectively. At optimum concentration, chitosan did not inhibit sporulation and release of zoospores from sporangia. Furthermore, pearl millet seedlings raised after seed treatment with chitosan showed an increased level of the defence‐related enzymes chitosanase and peroxidase as compared with the untreated pearl millet seedlings on downy mildew pathogen inoculation. The effect of chitosan in reducing downy mildew incidence was evaluated in both greenhouse and field conditions, in which respectively 79.08 and 75.8% disease protection was obtained. CONCLUSION: Chitosan was effective in protecting pearl millet plants against downy mildew under both greenhouse and field conditions by inducing resistance against the pathogen. Thus, chitosan formulation can be recommended for seed treatment in the management of downy mildew disease. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   

12.
The pattern of development of pycnidia and perithecia of Mycosphaerella pinodes was studied in the glasshouse on pea plants (cv. Solara) sprayed with a pycnospore suspension and in field plots inoculated with barley grains colonized by the fungus. The numbers of pycnidia and perithecia were estimated on each stipule and internode of infected plants, and were related to ratings of disease severity (0–5 scale). Pycnidia were produced on both green and senescent organs, whereas perithecia only appeared on senescent organs. The development and quantity of pycnidia were related to initial inoculum concentration and the physiological stage of the plants. The formation of fruiting bodies progressed from the bottoms to the tops of plants during crop development. Spore trapping showed that both pycnospore dispersal and ascospore discharge were initiated by rainfall or dew. Pycnospores were principally trapped in the first 20 cm above the soil surface while ascospores were also trapped above the crop canopy. Pycnospores and ascospores were dispersed throughout the growing season, suggesting that ascospores also play an important role in secondary infections.  相似文献   

13.
In 2017, leaf spots were found on lettuce growing in fields in Songkhla Province, southern Thailand. The fungus isolated from the spot lesions on the leaves was identified as Curvularia aeria (Bat., J.A.Lima and C.T.Vasconc.) Tsuda based on morphological characteristics and DNA sequences of the ITS region of the rRNA gene. After a conidial suspension of the isolate was sprayed on lettuce seedlings, the leaf spots developed on lettuce seedlings, and the fungus was reisolated; leaves of plants inoculated with water did not develop spots. This is the first report of C. aeria causing leaf spot on lettuce.  相似文献   

14.
Ramularia collo‐cygni (Rcc) is becoming an increasing problem for barley growers across Europe. However, the life cycle of the pathogen is only slowly being elucidated. In this study, Rcc DNA was detected in a number of harvested seed samples from 1999 to 2010, with mean levels peaking in winter barley samples in 2009. A number of experiments were carried out to determine whether the pathogen could move from barley seed to seedlings, and also from seed through the developing plant and into the subsequent generation of seed, both in controlled experiments and in field trials. Results from testing of seed indicated that the fungus is widespread at the end of the growing season in harvested grain samples and can be transmitted to developing plants from infected seed stock. Examination of infected seedlings did not reveal the presence of spores but fungal structures were found within the leaf. The location of the fungus within seed was examined, with Rcc DNA found in both embryo and non‐embryo tissue. The implications for barley production of the pathogen being seedborne are discussed.  相似文献   

15.
Various control strategies for Achillea millefolium L. (yarrow) were investigated in a dense stand of the weed at Lincoln College in 1977–1978. In early spring plots were either rotary cultivated or left undisturbed. In late spring, plots of both previous treatments were either left undisturbed, rotary cultivated or sprayed with glyphosate at 1·5 kg ha?1. The whole experiment was rotary cultivated twice 1 week later and sown with Hordeum vulgure L. cv. Zephyr (barley) at 144 kg seed ha?1. MCPA + dicamba at 0·9+0·15 kg ha?1 was applied to half of each plot when the second node was detectable (Zadok 32). Rotary cultivation and glyphosate both substantially reduced the regrowth of A. millefolium but glyphosate reduced regrowth by a greater proportion when applied to undisturbed plants than when applied to plants regenerating after cultivation. Both gave a more than 95% reduction compared to the control (rotary cultivation only at sowing time) in the amount of A. millefolium present in the barley stubble in the autumn. MCPA + dicamba caused seedling mortality but did not affect the numbers of primary shoots from rhizome fragments. The grain yield of the barley increased from 2·91 t ha?1 when A. millefolium was not controlled to 4·23 t ha?1 with good control. The barley yield appeared to be restricted by competition from regenerating A. millefolium and by a nitrogen deficiency induced in some regimes by nitrogen immobilization in decaying rhizomes.  相似文献   

16.
VOGELGSANG  WATSON  DITOMMASO  HURLE 《Weed Research》1998,38(3):175-182
The effects of the fungal pathogen Phomopsis convolvulus Ormeno on seedling and established plant performance of Convolvulus arvensis L. were compared under both controlled and field conditions. Under a controlled environment, a granular barley formulation of the fungal inoculum that had been applied on to the soil surface of pots containing pre-germinated C. arvensis seeds resulted in above-ground biomass reductions of up to 87%. However, application of the fungus to established plants that had been cut to ground level produced biomass reductions (43%) that were nearly half of those obtained for seedlings. In a parallel field experiment conducted over two growing seasons, application of P. convolvulus resulted in dramatic above-ground biomass reductions for both seedlings and established plants. In one trial, biomass reductions of up to 100% and 98%, respectively, were obtained. C. arvensis coverage within field plots was closely correlated with above-ground biomass. Findings in this study indicated that P. convolvulus may provide effective control of C. arvensis when applied pre-emergence.  相似文献   

17.
Wild oat (Avena fatua L.) plants sprayed at the 2-or 3-leaf stages of growth with diclotop-methyl developed chlorosis over the entire leaf blade of all leaves. The leaves became necfrotic 7days after spraying Shool growth was inhibited. In wheat (Triticum aesicum L cv.Waldron) discrete chlorotic areas developed only where the herbicide convicted the 2nd or 3rd leaf with no visible injury so new growth uf'ter treutment. Growth inhibition of susceptible oat (Avena sativa L. cv. Garry) was sensitive to placement of diclutop-methyl near the upica and meristematic sites of the plant. Chlorosis and necrosis were independent of herbicide placement. Selective herbicide placement induced chlorosis only or both chlorosis and growth inhibition Root growth in wild oat and barley (Hordeum rulgare L. cv. Dickson) was strongly inhibited by 1–0 μM diclofop-methyl. Wild oat shoots were killed when seedlings were root-treated with 10 μM diclofop-melhyl. The 100 μM rool treatment killed barley shoots but only stunted the growth of wheat shoots by approximately 50%. In root-ireated wheat plants the shoots were turgid and developed a light purple colour, whereas in foliar-treated plants the shoots developed discrete chlorotic areas.  相似文献   

18.
On wheat seedlings systemically protected by root application of procaine-hydrochloride, griseofulvin or 6-azauracil, germination of oidia ofErysiphe graminis f. sp.tritici and penetration of this fungus into the epidermal cell wall was as high as on control plants. Inhibition of powdery mildew development became apparent only after the penetration process had started. About 85% of the infections were halted within 24 hours after the inoculation, and did not result in the formation of a haustorium. In the other cases usually not more than one haustorium per infection court was formed, which often showed anomalies, characteristic for each compound used. Development of mycelium was scanty or absent and no sporulation occurred. Similarly, on plants of a resistant wheat variety, powdery mildew inhibition became apparent only after penetration of the host had started. There was no development of mycelium or sporulation. A severe reaction of certain epidermal cells to penetration by powdery mildew was observed on resistant as well as on treated and untreated susceptible plants. However, in relation to the total number of infections, the percentage of this type of reaction was low.  相似文献   

19.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

20.
Biological control of the western flower thrips (WFT)Frankliniella occidentalis, using the entomopathogenicMetarhizium anisopliae-7 (M. a-7) strain was studied in three consecutive seasons under greenhouse conditions. Cucumber plants infested with WFT were sprayed with spore suspension of the fungusM. a-7 (0.5 g m-2), or the soil was treated with dry powder of the fungus (0.5 g m-2); the control was without fungus application. In the 1997 spring experiment, when the cucumber plants were initially infested with only three or four insects per leaf, the spore suspension spray caused a significant reduction in growth of the thrips population compared with the other treatments and the control. However, in the 1997 summer experiment, when the plants were initially heavily infested with WFT (10–15 insects per leaf), the spray treatment caused only a modest reduction in WFT population growth, and only after 4 weeks of treatment was the reduction significant. In the 1999 experiment, with a low initial WFT population of three or four insects per leaf, the spray treatment was effective in reducing the population growth to a lower level than in the other treatments or control. TheM. a-7 strain was found to be effective in reducing the population growth of WFT under greenhouse conditions, particularly when the initial thrips population was low to moderate. http://www.phytoparasitica.org posting Nov. 4, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号