首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Luan  X. Guo  Y. Zhang  J. Yao  W. Chen 《Plant Breeding》2009,128(6):671-679
CS‐B14Sh and CS‐B22Sh are cotton interspecific chromosome substitution (CS)‐B lines, in which a pair of short arms of chromosome 14 and chromosome 22 were introgressed from Gossypium barbadense doubled‐haploid line 3‐79 with the background of Gossypium hirsutum line TM‐1, respectively. These two CS‐B lines were crossed with TM‐1, and segregating progenies (F2 and F2:3, respectively) were obtained. Phenotypic data of lint yield, yield‐related traits and fibre‐quality traits were collected from two trials. In the cross CS‐B14SH X TM‐1, QTL for boll weight (BW), lint percentage (LP), fibre upper half mean length (UHML), micronaire reading (MIC), and fibre breaking tensile strength (STR) were repeatedly detected. Alleles from 3‐79 decreased BW and MIC, but increased UHML and STR. In the cross CS‐B22Sh X TM‐1, QTL for BW, LP, UHML, MIC, STR, fibre elongation (EL),seed weight(SW), node of first fruiting branch (NFB) and fibre uniformity index (UI) were repeatedly detected, and alleles from 3‐79 decreased UHML, UI and STR, but increased NFB, SW, MIC and EL. QTL clusters were found in both populations.  相似文献   

2.
3.
To study the genetic basis of rice flag leaf morphology, quantitative genetic analysis was conducted in a population of 37 chromosome segment substitution lines (CSSLs) of indica elite variety ‘Habataki’ in the background of japonica cultivar ‘Sasanishiki’ across three different environments. The CSSLs showed normal distribution with transgressive segregation, indicating that these four traits are controlled by polygenes. Moreover, analyses of variance showed that these traits were highly influenced by the growing environment, which are typical for polygenic quantitative traits. Seven quantitative trait loci (QTLs) on four chromosomes were detected in total: four for flag leaf width, one for flag leaf area and two for flag leaf angle. Two key QTLs, qFLW4 and qFLAG5 controlling flag leaf width and angle, respectively, were identified in all three environments. These QTLs could provide useful information for marker‐assisted selection in improving the performance of plant architecture with regard to leaf angle and area. Moreover, developed CSSLs with these QTLs information are also useful research materials to reveal the importance of leaf morphology in relation to grain yield.  相似文献   

4.
Genetic mapping is an essential tool for cotton (Gossypium hirsutum L.) molecular breeding and application of DNA markers for cotton improvement. In this present study, we evaluated an RI population including 188 RI lines developed from 94 F2-derived families and their two parental lines, ‘HS 46’ and ‘MARCABUCAG8US-1-88’, at Mississippi State, MS, for two years. Fourteen agronomic and fiber traits were measured. One hundred forty one (141) polymorphic SSR markers were screened for this population and 125 markers were used to construct a linkage map. Twenty six linkage groups were constructed, covering 125 SSR loci and 965 cM of overall map distance. Twenty four linkage groups (115 SSR loci) were assigned to specific chromosomes. Quantitative genetic analysis showed that the genotypic effects accounted for more than 20% of the phenotypic variation for all traits except fiber perimeter (18%). Fifty six QTLs (LOD > 3.0) associated with 14 agronomic and fiber traits were located on 17 chromosomes. One QTL associated with fiber elongation was located on linkage group LGU01. Nine chromosomes in sub-A genome harbored 27 QTLs with 10 associated with agronomic traits and 17 with fiber traits. Eight chromosomes in D sub-genome harbored 29 QTLs with 13 associated with agronomic traits and 16 with fiber traits. Chromosomes 3, 5, 12, 13, 14, 16, 20, and 26 harbor important QTLs for both yield and fiber quality compared to other chromosomes. Since this RI population was developed from an intraspecific cross within upland cotton, these QTLs should be useful for marker assisted selection for improving breeding efficiency in cotton line development. Paper number J1116 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762. Mention of trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by USDA, ARS and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

5.
以东乡普通野生稻和日本晴为亲本构建的染色体片段置换系为研究材料, 2019年分别在北京、山东临沂和江西南昌对分蘖数、穗粒数和粒形等11个产量相关性状进行多环境鉴定,结合染色体片段置换系基因型数据定位水稻产量相关性状QTL。3个环境共检测到68个QTL,包括株高4个、穗长5个、分蘖数2个、一次枝梗数7个、一次枝梗粒数8个、二次枝梗数8个、二次枝梗粒数10个、每穗粒数6个、千粒重7个、粒长8个和粒宽3个; LOD值介于2.50~12.66之间,贡献率变幅为4.67%~27.79%,15个QTL的贡献率大于15%;24个QTL与已报道位点/基因位置重叠,44个QTL为新发现位点; 6个QTL在2个环境能被检测到, 1个QTL qTGW2能在3个环境检测到,且是还未报道的新位点。最后,利用BSA法验证了qPH7、qPBPP8-2和qGW10三个QTL的可靠性。本研究将为后续产量相关性状基因克隆以及进一步解析其遗传基础和分子调控机制奠定基础。  相似文献   

6.
An initial F2 mapping population of 223 plants of the cross between TM‐1 (Gossypium hirsutum L.) × H102 (Gossypium barbadense L.) was used to map QTLs controlling fibre strength in cotton. A genetic linkage map with 408 SSR markers was constructed with a total length of 3872.6 cM. Multiple‐QTL model of the software MapQTL version 5.0 was used to map QTLs related to fibre strength of the F2 : 3 population. QTL QFS‐D11‐1 conferring fibre strength was mapped between NAU2950 and NAU4855 on chromosome 21 (Chr. 21) which explained 23.4% of phenotypic variation. Introgressed lines (ILs), that is, IL‐D11‐1, IL‐D11‐2 and IL‐D11‐3 were obtained through marker‐assisted backcrossing in TM‐1 background. An F2 population of 758 plants derived from cross IL‐D11‐2 × TM‐1 was used for fine‐mapping QTL QFS‐D11‐1. QFS‐D11‐1 was mapped between markers NAU2110 and NAU2950, adjacent to its initial interval NAU2950–NAU4855 with phenotypic variation explaining 35.8%. QFS‐D11‐1 was further mapped to 0.6 cM from the flanking marker NAU2950. The results will give a basis for marker‐assisted selection of QFS‐D11‐1 in cotton breeding and to lay the foundation for cloning QFS‐D11‐1.  相似文献   

7.
株型是由多个形态和生理性状集成的复合性状,它与水稻产量密切相关。挖掘优异株型等位基因或QTL,对水稻超高产育种具有重要意义。本研究利用籼稻昌恢121和粳稻Koshihikari构建的208个染色体片段置换系(chromosome segment substitution lines, CSSLs),在3个环境下,对控制株高、剑叶形态和分蘖数的QTL进行检测,共鉴定到35个株型性状QTL,分布于11条染色体上(除9号染色体以外),解释表型变异2.00%~22.86%。值得关注的是qPH-1-1、qFLW-6和qFLA-3均能在3个环境下被检测到,其中qFLW-6为1个新鉴定到的剑叶宽QTL。对qPH-1-1和qFLA-3位点进行鉴定,验证了这2个位点等位基因的加性效应和环境稳定性。本研究为株型性状QTL的进一步精细定位、克隆及分子辅助聚合育种奠定了基础。  相似文献   

8.
Summary An attempt was made to identify the chromosomal location of genetic control of a few components of wheat quality, using chromosome substitution lines of Cappelle Desprez, Cheyenne, Hope, and Timstein into the recipient variety Chinese Spring.Major factors for kernel hardness and increased baking absorption were found on chromosomes 5D of Cheyenne and Hope, and on 3B, 5D and 7D of Timstein. In Timstein, the presence of one of these chromosomes sufficed to make the wheat kernels hard.Factors for favourable dough properties were identified on a few other chromosomes, different in various varieties. These were 1A of Cappelle Desprez and Cheyenne, 3B of Hope, and 2D of Timstein. All but one of these chromosomes showed an increase in loaf volume to a level in-between those of the recipient variety Chinese Spring and the donor varieties. No relationship was found between kernel hardness and dough-making and baking properties.It was assumed that wheat quality is due to a combination of kernel hardness and favourable dough-making properties. As the genes for these factors are located on different chromosomes, it should not be too difficult to introduce both factors in existing varieties with poor baking properties. In a wheat breeding programme, the quality of new lines can be assessed in a rather simple way by determining kernel hardness and dough stability.  相似文献   

9.
Summary The 21 intervarietal chromosome substitution lines of the cultivar Hope in Chinese Spring were used to analyse the genetic differences between the two cultivars Hope and Chinese Spring in grain protein content and grain weight.Only one chromosome of Hope, 5D, significantly influenced grain protein content of Chinese Spring. Its influence was of only minor effect and was to decrease protein content expression of Chinese Spring. It has been postulated that the genetic control of protein content, in this instance, is most likely due to many genes each of small effect.Five chromosomes of Hope influenced the 1000 grain weight value of normal Chinese Spring, all increasing its expression. Chromosomes 1A, 4A and 5B were of major effect and 3A and 6A of comparatively minor effect. A minimal estimate of five genes determines the difference in grain size between these cultivars. The possible evolutionary significance of the contribution of the A genome of bread wheat to grain size determination is discussed. On the basis of certain findings of this study, proposals are made for breeding for increased grain size in hexaploid wheat.  相似文献   

10.
增加穗粒数对水稻高产品种培育至关重要。其遗传基础复杂,由多基因控制。水稻染色体片段代换系可以将多基因控制的复杂性状分解,因而是理想的遗传研究材料。本研究通过高代回交和自交结合分子标记辅助选择方法,鉴定了一个以日本晴为受体、西恢18为供体亲本的、含有15个代换片段的增加穗粒数的水稻染色体片段代换系Z747,平均代换长度为4.49 Mb。与受体日本晴相比, Z747的每穗总粒数、一次枝梗数、二次枝梗数、穗长和粒长显著增加,粒宽显著变窄、结实率显著降低,但结实率仍为81%。进一步以日本晴和Z747杂交构建的次级F2群体鉴定出46个相关性状的QTL,分布于水稻1号、2号、3号、5号、6号、9号、11号和12号染色体上。其中qGPP12、qPH-3-1、qPH-3-2等12个QTL可能与已克隆的基因等位, qSPP9等34个可能是新鉴定的QTL。Z747的每穗总粒数由2个具有增加粒数效应的QTL (qSPP3和qSPP5)和1个具有减少粒数效应的QTL (qSPP9)控制。研究结果对主效QTL的精细定位和克隆、以及有利基因的单片段代换系培育有重要意义。  相似文献   

11.
粒形及千粒重是水稻产量的重要影响因素,通过挖掘这些性状的优异基因,对水稻超高产育种具有重要意义。本研究利用1套以籼稻恢复系昌恢121为背景亲本,粳稻越光为供体亲本构建的染色体片段代换系为材料,在3个环境下对水稻粒形及千粒重进行QTL检测及稳定性分析,共检测到59个QTL,分布于1号、2号、3号、4号、5号、6号、7号、10号、11号和12号染色体上,贡献率为0.77%~36.26%,其中发现10个QTL多效位点。值得关注的是qGW2-1、qGW2-2、qGW3-1、qGW3-2、qGL3和qGL12这6个QTL能在3个环境中重复检测到,其中qGW3-1为新鉴定的QTL位点。这些结果为进一步开展水稻粒形基因的精细定位、克隆和分子辅助育种奠定了一定的理论基础。  相似文献   

12.
 利用海岛棉染色体置换陆地棉一对染色体或染色体臂的置换系,进行主要农艺性状、抗黄萎病性和纤维品质基因染色体定位。结果表明,海岛棉1号染色体可以增加株高;16、17、18、4号染色体携带降低铃数基因;22Lo、22Sh、16、11Sh、26Lo号染色体可以提高衣分;大部分染色体降低铃重。16、26Lo染色体可以增强抗黄萎病性。对纤维品质性状分析表明,14Sh、26Lo号染色体可以提高纤维长度;14Sh、15Sh号染色体可以提高强度;4号染色体可以降低麦克隆值;22Sh、16、22Lo、11Sh号染色体可以提高伸长率。推测这些染色体上可能具有对应性状的基因。  相似文献   

13.
To advance the identification of quantitative trait loci (QTLs) to reduce Cd content in rice (Oryza sativa L.) grains and breed low-Cd cultivars, we developed a novel population consisting of 46 chromosome segment substitution lines (CSSLs) in which donor segments of LAC23, a cultivar reported to have a low grain Cd content, were substituted into the Koshihikari genetic background. The parental cultivars and 32 CSSLs (the minimum set required for whole-genome coverage) were grown in two fields with different natural levels of soil Cd. QTL mapping by single-marker analysis using ANOVA indicated that eight chromosomal regions were associated with grain Cd content and detected a major QTL (qlGCd3) with a high F-test value in both fields (F = 9.19 and 5.60) on the long arm of chromosome 3. The LAC23 allele at qlGCd3 was associated with reduced grain Cd levels and appeared to reduce Cd transport from the shoots to the grains. Fine substitution mapping delimited qlGCd3 to a 3.5-Mbp region. Our results suggest that the low-Cd trait of LAC23 is controlled by multiple QTLs, and qlGCd3 is a promising candidate QTL to reduce the Cd level of rice grain.  相似文献   

14.
Grain yield is one of the most important goals in wheat breeding, and agronomic or yield-related traits can directly reflect the characteristics of varieties. In order to determine the evolution of genetic diversity in agronomic traits of Xinjiang winter wheat varieties and their adaptabilities to different ecological environments, 134 winter wheat landraces and 54 moderns bred varieties from Xinjiang were selected for agronomic trait investigation. They were planted in three different ecological environments (Urumqi and Yining in Xinjiang province, and Tai’an in Shandong province) for two consecutive growth seasons, and nine agronomic and yield-related traits were surveyed and analyzed. The estimated broad sense heritability of nine agronomic and yield traits was in descending order: plant height > grain width > grain length/width ratio > spike length > spikelet number > thousand- kernel weight > grain number per spike > grain length > fertile spikelet number. Correlation analyses of nine agronomic and yield traits showed that these traits were correlated with each other. It was found that the plant height, spike length and grain length/width ratio of landraces were higher than that in modern bred varieties, but the grain number per spike, thousand kernel weight, grain length and grain width in landraces were less than that in modern bred varieties. However, the correlation coefficient of these nine traits was higher in modern bred varieties than that in landraces. These variations reflected the evolution of Xinjiang winter wheat varieties in agronomic traits in recent years. This study may provide important information for breeders to select the breeding parents in different winter wheat regions.  相似文献   

15.
粒型、株高及穗部组成性状与产量形成密切相关,是水稻重要农艺性状,但遗传基础复杂。染色体片段代换系是用于复杂性状遗传研究的良好材料。本研究鉴定了一个以日本晴为受体、西恢18为供体亲本的水稻优良染色体片段代换系Z746。Z746携带来自西恢18的7个代换片段,平均代换长度为3.99 Mb,其株高、粒长和穗部性状均与受体存在显著差异。进一步通过日本晴与Z746杂交构建的次级F2群体共检测到36个相关QTL,分布于2号、3号、4号、6号和11号染色体。其中5个可能与已克隆基因等位,如qPH3-1等, 8个可被多次检出,表明这些是遗传稳定的主效QTL。Z746的粒长主要由4个QTL(qGL3、qGL4、qGL2、qGL6)控制,其中qGL3和qGL4对粒长变异的贡献率分别为60.28%和27.47%。株高由5个QTL控制,穗长由4个QTL控制,每穗粒数由2个QTL控制,千粒重由2个QTL控制。然后以MAS在F3共选出8个单片段代换系,并以此在F4进行了相关QTL验证,共有24个QTL可被8个单片段代换系(SSSL)检出,重复检出率为66.7%,表明这些QTL遗传稳定。本研究为目的 QTL的进一步...  相似文献   

16.
Grain yield-related traits and grain quality-related traits are important for rice cultivars. The quantitative trait loci (QTLs) involved in controlling the natural variation in these traits among closely related cultivars are still unclear. The present study describes the development of a novel chromosome segment substitution line (CSSL) population derived from a cross between the temperate japonica cultivars Yukihikari and Kirara397, which are grown in Hokkaido, the northernmost limit for rice cultivation. Days to heading, culm length, panicle length, panicle number, brown grain weight per plant, thousand brown grain weight, brown grain length, brown grain width, brown grain thickness, apparent amylose content, and protein content were evaluated. Panicle length, brown grain length and amylose content differed significantly in the parental cultivars. Thirty-five significant changes in the evaluated traits were identified in the CSSLs. A total of 28 QTLs were located on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12. These findings could be useful for breeding rice cultivars in the northernmost limit for rice cultivation.  相似文献   

17.
AFLP marker associations with agronomic and fiber traits in cotton   总被引:1,自引:0,他引:1  
DNA markers linked with major QTL contributing to traits of importance will be a useful tool for cotton (Gossypium spp.) genetics and breeding. We crossed four photoperiod-sensitive accessions of cotton, G. hirsutum L., with a cultivar, selected day-neutral plants and backcrossed four times to each of the four photoperiod-sensitive accessions, selecting day-neutral plants at each generation. The day-neutral plants from the first cross and the four backcross generations were advanced to the F6. These 20 day-neutral lines and four cultivars were grown in two environments at Mississippi State, MS and scored for seven agronomic and fiber quality traits. They were also scored for AFLP markers using a bulk sample of leaves from each of 24 lines. More than 50 AFLP markers were associated with the seven traits with fewer markers associated with fiber than agronomic traits. However, one to four markers were associated with 22–93% of the phenotypic variability of each of the seven traits. The results suggest that selected markers could be used in marker assisted selection (MAS) in crosses designed to use alleles from exotic accessions or cultivars to develop elite breeding lines for cotton improvement.  相似文献   

18.
Limited knowledge about genetic and physiological traits associated with drought and low temperature stresses and narrow genetic diversity in Upland cotton (Gossypium hirsutum L.) are serious impediments in its genetic improvement. The objectives of this research were to determine the genetic and physiological traits associated with drought and low temperature effects and to identify chromosomal effects on these traits using chromosome substitution (CS) lines from three alien species of Gossypium, G. barbadense, G. tomentosum, and G. mustelinum, respectively. Two experiments were conducted to study low temperature and drought stress effects during seedling emergence and early growth stages in 21 cotton CS-lines with parent, Texas Marker (TM)-1. In Experiment I, plants were grown at optimum (30/22 °C) and low (22/14 °C) temperature conditions under optimum water and nutrient conditions. In Experiment II, plants were grown at optimum water (soil moisture content of 0.167 m3 m?3) and in drought (soil moisture content 0.105 m3 m?3) conditions under optimum temperature conditions. Above- and below-ground growth traits including several root traits of the CS lines were assessed at 25 days after sowing. The findings suggest which substituted chromosome or chromosome segment from the alien species likely harbors one or more genes for higher and lower tolerance to low temperature, respectively. CS-T04 and CSB08sh showed higher and lower tolerance to low temperature, respectively and CS-T04 and CS-B22sh showed higher and lower tolerance, respectively, to drought. CS lines are valuable analytical tool and useful genetic resources for targeted exploitation of beneficial genes for drought and low temperature stresses in Upland cotton.  相似文献   

19.
Making use of the markers linked closely to QTL for early-maturing traits for MAS (Marker-assisted selection) is an effective method for the simultaneous improvement of early maturity and other properties in cotton. In this study, two F2 populations and their F2:3 families were generated from the two upland cotton (Gossypium hirsutum L.) crosses, Baimian2 × TM-1 and Baimian2 × CIR12. QTL for early-maturing traits were analyzed using F2:3 families. A total of 54 QTL (31 suggestive and 23 significant) were detected. Fourteen significant QTL had the LOD scores not only > 3 but also exceeding permutation threshold. At least four common QTL, qBP-17 for bud period (BP), qGP-17a/qGP-17b (qGP-17) for growth period (GP), qYPBF-17a/qYPBF-17b (qYPBF-17) for yield percentage before frost (YPBF) and qHFFBN-17 for height of first fruiting branch node (HFFBN), were found in both populations. These common QTL should be reliable and could be used for MAS to facilitate early maturity. The common QTL, qBP-17, had a LOD score not only > 3 but also exceeding permutation threshold, explaining 12.6% of the phenotypic variation. This QTL should be considered preferentially in MAS. Early-maturing traits of cotton are primarily controlled by dominant and over-dominant effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号