首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The transplacental exchange of moxidectin after maternal or fetal intravenous (i.v.) administration was studied using the chronically catheterized fetal sheep model. Nine pregnant Suffolk Down sheep of 65.7 ± 5.9 kg body weight (bw) were surgically prepared to insert polyvinyl catheters in the fetal femoral artery and vein and amniotic sac. The ewes were randomly assigned to two experimental groups. In group 1 (maternal injection) five ewes were treated with an i.v. bolus of 0.2 mg of moxidectin/kg bw. In group 2, (fetal injection) an i.v. bolus of 1 mg of moxidectin was administered to the four fetuses by femoral vein catheters. Maternal and fetal blood and amniotic fluid samples were taken before and after moxidectin administration for a 144 h post-treatment period. Samples were analyzed by liquid chromatography. A noncompartmental pharmacokinetic analysis was performed and statistical differences were determined by mean of parametric and nonparametric statistical tests. Pharmacokinetic differences observed in maternal variables were shorter elimination half-life and mean residence time compared with values previously reported for ivermectin. Drug diffusion from maternal to fetal circulation ( AUC 0– t  = 232.6 ± 72.5 ng·h/mL) was statistically not different ( P =  0.09) compared with fetal to maternal diffusion ( AUC 0– t = 158.0 ± 21.6 ng·h/mL). Fetuses showed significantly ( P  =   0.008) lower drug body clearance values compared with those observed in the maternal side. Considering the observed transplacental passages between materno-fetal or feto-maternal circulations, we conclude that the placental barrier is not effective in preventing the moxidectin diffusion between mother and fetus.  相似文献   

2.
Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS‐induced acute‐phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8 months old and 35.5 ± 2.2 kg in body weight (bw), were distributed through a crossover factorial 2 × 2 design, with 4 weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples (5 mL) were collected before drug administration and at different times between 0.05 and 48.0 h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann–Whitney U‐test. The mean values of AUC0–∞ in the endotoxaemic sheep (105.9 ± 14.3 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy sheep (78.4 ± 5.2 μg·h/mL). The total mean plasma clearance (CLT) decreased from 257.7 ± 16.9 mL·h/kg in the control group to 198.2 ± 24.1 mL·h/kg in LPS‐treated sheep. A significant increase (< 0.05) in the terminal half‐life was observed in the endotoxaemic sheep (16.9 ± 3.8 h) compared to the values observed in healthy sheep (10.4 ± 3.2 h). In conclusion, the APR induced by the intravenous administration of E. coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug.  相似文献   

3.
A pharmacokinetic and bioavailability study of sulfadiazine combined with trimethoprim (sulfadiazine/trimethoprim) was carried out in fifteen healthy young ostriches after intravenous (i.v.), intramuscular (i.m.) and oral administration at a total dose of 30 mg/kg body weight (bw) (25 and 5 mg/kg bw of sulfadiazine and trimethoprim, respectively). The study followed a single dose, three periods, cross‐over randomized design. The sulfadiazine/trimethoprim combination was administered to ostriches after an overnight fasting on three treatment days, each separated by a 2‐week washout period. Blood samples were collected at 0 (pretreatment), 0.08, 0.25, 0.50, 1, 2, 4, 6, 8, 12, 24 and 48 h after drug administration. Following i.v. administration, the elimination half‐life (t1/2β), the mean residence time (MRT), volume of distribution at steady‐state (Vd(ss)), volume of distribution based on terminal phase (Vd(z)), and the total body clearance (ClB) were (13.23 ± 2.24 and 1.95 ± 0.19 h), (10.06 ± 0.33 and 2.17 ± 0.20 h), (0.60 ± 0.08, and 2.35 ± 0.14 L/kg), (0.79 ± 0.12 and 2.49 ± 0.14 L/kg) and (0.69 ± 0.03 and 16.12 ± 1.38 mL/min/kg), for sulfadiazine and trimethoprim, respectively. No significant difference in Cmax (35.47 ± 2.52 and 37.50 ± 3.39 μg/mL), tmax (2.47 ± 0.31 and 2.47 ± 0.36 h), t½β (11.79 ± 0.79 and 10.96 ± 0.56 h), Vd(z)/F (0.77 ± 0.06 and 0.89 ± 0.07 L/kg), ClB/F (0.76 ± 0.04 and 0.89 ± 0.07) and MRT (12.39 ± 0.40 and 12.08 ± 0.36 h) were found in sulfadiazine after i.m. and oral dosing, respectively. There were also no differences in Cmax (0.71 ± 0.06 and 0.78 ± 0.10 μg/mL), tmax (2.07 ± 0.28 and 3.27 ± 0.28 h), t½β (3.30 ± 0.25 and 3.83 ± 0.33 h), Vd(z)/F (6.2 ± 0.56 and 6.27 ± 0.77 L/kg), ClB/F (21.9 ± 1.46 and 18.83 ± 1.72) and MRT (3.68 ± 0.19 and 4.34 ± 0.14 h) for trimethoprim after i.m. and oral dosing, respectively. The absolute bioavailability (F) was 95.41% and 86.20% for sulfadiazine and 70.02% and 79.58% for trimethoprim after i.m. and oral administration, respectively.  相似文献   

4.
Disposition following single intravenous injection (2 mg/kg) and pharmacodynamics of cefquinome were investigated in buffalo calves 6–8 months of age. Drug levels in plasma were estimated by high-performance liquid chromatography. The plasma concentration–time profile following intravenous administration was best described by a two-compartment open model. Rapid distribution of cefquinome was evident from the short distribution half-life (t ½α ?=?0.36?±?0.01 h), and small apparent volume of distribution (Vdarea?=?0.31?±?0.008 L/kg) indicated limited drug distribution in buffalo calves. The values of area under plasma concentration–time curve, elimination half-life (t ½β ), total body clearance (ClB), and mean residence time were 32.9?±?0.56 μg·h/mL, 3.56?±?0.05 h, 60.9?±?1.09 mL/h/kg, and 4.24?±?0.09 h, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cefquinome were 0.035–0.07 and 0.05–0.09 μg/mL, respectively. A single intravenous injection of 2 mg/kg may be effective to maintain the MIC up to 12 h in buffalo calves against the pathogens for which cefquinome is indicated.  相似文献   

5.
Brown, S.A., Jacobson, J.D., Hartsfield, S.M. Pharmacokinetics of midazolam administered concurrently with ketamine after intravenous bolus or infusion in dogs. J. vet. Pharmacol. Therap. 16 , 419–425. Midazolam, a water-soluble benzodiazepine tranquilizer, has been considered by some veterinary anaesthesiologists to be suitable as a combination anaesthetic agent when administered concurrently with ketamine because of its water solubility and miscibility with ketamine. However, the pharmacokinetics of midazolam have not been extensively described in the dog. Twelve clinically healthy mixed breed dogs (22.2–33.4 kg) were divided into two groups at random and were administered ketamine (10 mg/kg) and midazolam (0.5 mg/kg) either as an intravenous bolus over 30 s (group 1) or as an i.v. infusion in 0.9% NaCl (2 ml/kg) over 15 min. Blood samples were obtained immediately before the drugs were injected and periodically for 6 h afterwards. Serum concentrations were determined using gas chromatography with electron-capture detection. Serum concentrations were best described using a two-compartment open model and indicated a t½α of 1.8 min and t½β.p of 27.8 min after i.v. bolus, and t½α f 1–35 min and t½β of 31.6 min after i.v. infusion. The calculated pharmacokinetic coefficient B was significantly smaller after i.v. infusion (429 ± 244 ng/ml) than after i.v. bolus (888 ± 130 ng/ml, P = 0.004). Furthermore, AUC was significantly smaller after i.v. infusion (29 800 ±6120 ng/h/ml) than after i.v. bolus (42 500 ± 8460 ng/h/ml, P < 0.05), resulting in a larger ClB after i.v. infusion (17.4 ± 4.00 ml/min/kg than after i.v. bolus (12.1 ± 2.24 ml/min/kg, P < 0.05). No other pharmacokinetic value was significantly affected by rate of intravenous administration.  相似文献   

6.
The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)‐induced acute phase response (APR) on the pharmaco‐kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol‐amine (FFC‐a) were extracted from the plasma, and their concentrations were determined by high‐performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t‐test. The mean values of AUC0–∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS‐treated rabbits. A significant increase (< 0.05) in the half‐life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half‐life and mean residence time (MRT), but a significant decrease in CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC‐a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug‐metabolizing enzymes.  相似文献   

7.
The target of the present study was to investigate the plasma disposition kinetics of levofloxacin in stallions (n = 6) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injection at a dose rate of 4 mg/kg bwt, using a two‐phase crossover design with 15 days as an interval period. Plasma samples were collected at appropriate times during a 48‐h administration interval, and were analyzed using a microbiological assay method. The plasma levofloxacin disposition was best fitted to a two‐compartment open model after i.v. dosing. The half‐lives of distribution and elimination were 0.21 ± 0.13 and 2.58 ± 0.51 h, respectively. The volume of distribution at steady‐state was 0.81 ± 0.26 L/kg, the total body clearance (Cltot) was 0.21 ± 0.18 L/h/kg, and the areas under the concentration–time curves (AUCs) were 18.79 ± 4.57 μg.h/mL. Following i.m. administration, the mean t1/2el and AUC values were 2.94 ± 0.78 h and 17.21 ± 4.36 μg.h/mL. The bioavailability was high (91.76% ± 12.68%), with a peak plasma mean concentration (Cmax) of 2.85 ± 0.89 μg/mL attained at 1.56 ± 0.71 h (Tmax). The in vitro protein binding percentage was 27.84%. Calculation of efficacy predictors showed that levofloxacin might have a good therapeutic profile against Gram‐negative and Gram‐positive bacteria, with an MIC ≤ 0.1 μg/mL.  相似文献   

8.
The purpose of this study was to describe and compare the pharmacokinetic properties of different formulations of erythromycin in dogs. Erythromycin was administered as lactobionate (10 mg/kg, IV), estolate tablets (25 mg/kg p.o.) and ethylsuccinate tablets or suspension (20 mg/kg p.o.). After intravenous (i.v.) administration, the principal pharmacokinetic parameters were (mean ± SD): AUC(0–∞) 4.20 ± 1.66 μg·h/mL; Cmax 6.64 ± 1.38 μg/mL; Vz 4.80 ± 0.91 L/kg; Clt 2.64 ± 0.84 L/h·kg; t½λ 1.35 ± 0.40 h and MRT 1.50 ± 0.47 h. After the administration of estolate tablets and ethylsuccinate suspension, the principal pharmacokinetic parameters were (mean ± SD): Cmax, 0.30 ± 0.17 and 0.17 ± 0.09 μg/mL; tmax, 1.75 ± 0.76 and 0.69 ± 0.30 h; t½λ, 2.92 ± 0.79 and 1.53 ± 1.28 h and MRT, 5.10 ± 1.12 and 2.56 ± 1.77 h, respectively. The administration of erythromycin ethylsuccinate tablets did not produce measurable serum concentrations. Only the i.v. administration rendered serum concentrations above MIC90 = 0.5 μg/mL for 2 h. However, these results should be cautiously interpreted as tissue erythromycin concentrations have not been measured in this study and, it is recognized that they can reach much higher concentrations than in blood, correlating better with clinical efficacy.  相似文献   

9.
Wang, R., Yuan, L.G., He, L.M., Zhu, L.X., Luo, X.Y., Zhang, C.Y., Yu, J.J., Fang, B.H., Liu, Y.H. Pharmacokinetics and bioavailability of valnemulin in broiler chickens. J. vet. Pharmacol. Therap. 34 , 247–251. The objective of this study was to investigate the pharmacokinetics and bioavailability of valnemulin in broiler chickens after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 10 mg/kg body weight (bw). Plasma samples were analyzed by high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS). Pharmacokinetic characterization was performed by non‐compartmental analysis using WinNonlin program. After intravenous administration, distribution was wide with the volume of distribution based on terminal phase(Vz) of 4.27 ± 0.99 L /kg. Mean valnemulin t1/2β(h), Clβ(L /h /kg), Vss (L /kg) and AUC(0–∞)(μg·h /mL) values were 2.85, 0.99, 2.72 and 10.34, respectively. After intramuscular administration, valnemulin was rapidly absorbed with a Cmax of 2.2 μg/mL achieved at 0.43 h (tmax), and the absolute bioavailability (F) was 88.81%; and for the oral route the same parameters were 0.66 ± 0.15 μg/mL, 1.54 ± 0.27 h and 74.42%. A multiple‐peak phenomenon was present after oral administration. The plasma profile of valnemulin exhibited a secondary peak during 2–6 h and a tertiary peak at 32 h. The favorable PK behavior, such as the wide distribution, slow elimination and acceptable bioavailability indicated that it is likely to be effective in chickens.  相似文献   

10.
Albarellos, G. A., Montoya, L., Denamiel, G. A. A., Velo, M. C., Landoni, M. F. Pharmacokinetics and bone tissue concentrations of lincomycin following intravenous and intramuscular administrations to cats. J. vet. Pharmacol. Therap.  35 , 534–540. The pharmacokinetic properties and bone concentrations of lincomycin in cats after single intravenous and intramuscular administrations at a dosage rate of 10 mg/kg were investigated. Lincomycin minimum inhibitory concentration (MIC) for some gram‐positive strains isolated from clinical cases was determined. Serum lincomycin disposition was best‐fitted to a bicompartmental and a monocompartmental open models with first‐order elimination after intravenous and intramuscular dosing, respectively. After intravenous administration, distribution was rapid (T1/2(d) = 0.22 ± 0.09 h) and wide as reflected by the volume of distribution (V(d(ss))) of 1.24 ± 0.08 L/kg. Plasma clearance was 0.28 ± 0.09 L/h·kg and elimination half‐life (T1/2) 3.56 ± 0.62 h. Peak serum concentration (Cmax), Tmax, and bioavailability for the intramuscular administration were 7.97 ± 2.31 μg/mL, 0.12 ± 0.05 h, and 82.55 ± 23.64%, respectively. Thirty to 45 min after intravenous administration, lincomycin bone concentrations were 9.31 ± 1.75 μg/mL. At the same time after intramuscular administration, bone concentrations were 3.53 ± 0.28 μg/mL. The corresponding bone/serum ratios were 0.77 ± 0.04 (intravenous) and 0.69 ± 0.18 (intramuscular). Lincomycin MIC for Staphylococcus spp. ranged from 0.25 to 16 μg/mL and for Streptococcus spp. from 0.25 to 8 μg/mL.  相似文献   

11.
Macrolides are important antimicrobials frequently used in human and veterinary medicine in the treatment of pregnant women and pregnant livestock. They may be useful for the control of infectious ovine abortion, which has economic, animal health, and human health impacts. In this study, catheters were surgically placed in the fetal vasculature and amnion of pregnant ewes at 115 (±2) days of gestation. Ewes were given a single dose of 2.5 mg/kg tulathromycin subcutaneously, and drug concentrations were determined in fetal plasma, maternal plasma, and amniotic fluid at 4, 8, 12, 24, 36, 48, 72, 144, and 288 hr after drug administration. Pharmacokinetic parameters in maternal plasma were estimated using noncompartmental analysis and were similar to those previously reported in nonpregnant ewes. Tulathromycin was present in fetal plasma and amniotic fluid, indicating therapeutic potential for use against organisms in these compartments, though concentrations were lower than those in maternal plasma. Time‐course of drug concentrations in the fetus was quite different than that in the ewe, with plasma concentrations reaching a plateau at 4 hr and remaining at this concentration for the remainder of the sampling period (288 hr), raising questions about how tulathromycin may be transported into or metabolized and eliminated by the fetus.  相似文献   

12.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

13.
The purpose of this study was to compare the pharmacokinetics of meloxicam in mature swine after intravenous (i.v.) and oral (p.o.) administration. Six mature sows (mean bodyweight ± standard deviation = 217.3 ± 65.68 kg) were administered an i.v. or p.o. dose of meloxicam at a target dose of 0.5 mg/kg in a cross‐over design. Plasma samples collected up to 48 h postadministration were analyzed by high‐pressure liquid chromatography and mass spectrometry (HPLC‐MS) followed by noncompartmental pharmacokinetic analysis. Mean peak plasma concentration (CMAX) after p.o. administration was 1070 ng/mL (645–1749 ng/mL). TMAX was recorded at 2.40 h (0.50–12.00 h) after p.o. administration. Half‐life (T½ λz) for i.v. and p.o. administration was 6.15 h (4.39–7.79 h) and 6.83 h (5.18–9.63 h), respectively. The bioavailability (F) for p.o. administration was 87% (39–351%). The results of this study suggest that meloxicam is well absorbed after oral administration.  相似文献   

14.
The purpose of the current investigation is to elucidate the pharmacokinetic profiles of orbifloxacin (OBFX) in lactating ewes (n = 6) following intravenous (i.v.) and intramuscular (i.m.) administrations of 2.5 mg/kg W. In a crossover study, frequent blood, milk, and urine samples were drawn for up to 48 h after the end of administration, and were then assayed to determine their respective drug concentrations through microbiological assay using Klebsiella pneumoniae as the test micro‐organism. Plasma pharmacokinetic parameters were derived from plasma concentration–time data using a compartmental and noncompartmental analysis, and validated a relatively rapid elimination from the blood compartment, with a slope of the terminal phase of 0.21 ± 0.02 and 0.19 ± 0.06 per hour and a half‐life of 3.16 ± 0.43 and 3.84 ± 0.59 h, for i.v. and i.m. dosing, respectively. OBFX was widely distributed with a volume of distribution V(d(ss)) of 1.31 ± 0.12 L/kg, as suggested by the low percentage of protein binding (22.5%). The systemic body clearance (ClB) was 0.32 ± 0.12 L/h·kg. Following i.m. administration, the maximum plasma concentration (Cmax) of 1.53 ± 0.34 μg/mL was reached at tmax 1.25 ± 0.21 h. The drug was completely absorbed after i.m. administration, with a bioavailability of 114.63 ± 11.39%. The kinetic milk AUCmilk/AUCplasma ratio indicated a wide penetration of orbifloxacin from the bloodstream to the mammary gland. OBFX urine concentrations were higher than the concurrent plasma concentrations, and were detected up to 30 h postinjection by both routes. Taken together, these findings indicate that systemic administration of orbifloxacin could be efficacious against susceptible mammary and urinary pathogens in lactating ewes.  相似文献   

15.
Ketorolac (KET) is a nonsteroidal anti‐inflammatory drug approved for the use in humans that possesses a potent analgesic activity, comparable to morphine, and could represent a useful tool to control acute pain also in animals. The clinical efficacy and pharmacokinetic profile of intravenous (IV) ketorolac tromethamine (0.5 mg/kg) were studied in 15 dogs undergoing gonadectomy. Intra‐operative cardiorespiratory variables were monitored, and post‐operative pain was assessed using a subjective pain score (0–24) in all dogs, whereas the pharmacokinetic profile of the drug was determined in 10 animals. During surgery, mean minimal alveolar concentration of isoflurane was 1.69 ± 0.11%, and normocapnia and spontaneous ventilation were maintained in all animals. During pain assessment, no significant differences between males and females were found, and in no case rescue analgesia was necessary. No adverse effects were reported. Serum samples were purified by solid‐phase extraction and analysed by HPLC with UV‐Vis detection. A large variability was observed in serum concentrations. The kinetics of ketorolac was described by a noncompartmental analysis. The elimination half‐life (t½λz) and ClB were 10.95 ± 7.06 h and 92.66 ± 84.49 mL/h/kg, respectively, and Vdss and Vz were 1030.09 ± 620.50 mL/kg and 1512.25 ± 799.13 mL/kg, respectively. AUC(0→last) and MRT(0→last) were 6.08 ± 3.28 h × μg/mL and 5.59 ± 2.12 h, respectively. The results indicate that ketorolac possess good post‐operative analgesic effects until about 6 h after administration in dogs undergoing moderately painful surgery.  相似文献   

16.
Pregnancy‐associated glycoproteins (PAG) constitute a large family of glycoproteins found in the outer placental epithelial cell layer of the placenta in Eutherian species. In ruminants, they are noted to be structurally closely related among the different species. This study was designed to determine PAG concentrations in maternal and fetal plasma, allantoic and amniotic fluids in buffalo species. Antisera (AS) generated in rabbits against distinct PAG molecules were used in three radioimmunoassay (RIA)‐PAG systems: RIA‐1 (antiserum raised against bovine PAG67kDa; AS#497), RIA‐2 (antiserum raised against caprine PAG55 + 62 kDa; AS#706) or RIA‐3 (antiserum raised against buffalo PAG; AS#859). Samples were collected at a slaughterhouse (n = 67). PAG concentrations determined by RIA‐2 gave significantly higher results in both allantoic and amniotic fluids (12.7 ± 2.1 ng/mL and 24.0 ± 7.3 ng/mL, respectively). Regarding maternal and fetal plasma, PAG concentrations obtained by RIA‐2 (21.8 ± 2.4 ng/mL and 20.2 ± 2.5 ng/mL, respectively) and RIA‐3 (25.0 ± 2.2 ng/mL and 21.9 ± 3.2 ng/mL, respectively) were higher than those obtained by RIA‐1 (15.5 ± 1.4 ng/mL and 16.1 ± 1.8 ng/mL, respectively). The correlation among the three systems was very high. The study clearly reveals the ability of different PAG‐RIA systems to measure PAG concentration in swamp buffalo samples.  相似文献   

17.
Sellers, G., Lin, H. C., G. Riddell, M. G., Ravis, W. R., Lin, Y. J., Duran, S. H., Givens, M.D. Pharmacokinetics of ketamine in plasma and milk of mature Holstein cows. J. vet. Pharmacol. Therap. 33 , 480–484. The purpose of this study was to evaluate the pharmacokinetics of ketamine in mature Holstein cows following administration of a single intravenous (i.v.) dose. Plasma and milk concentrations were determined using a high‐performance liquid chromatography assay. Pharmacokinetic parameters were estimated using a noncompartmental method. Following i.v. administration, plasma Tmax was 0.083 h and plasma Cmax was 18 135 ± 22 720 ng/mL. Plasma AUC was 4484 ± 1,398 ng·h/mL. Plasma t½β was 1.80 ± 0.50 h and mean residence time was 0.794 ± 0.318 h with total body clearance of 1.29 ± 0.70 L/h/kg. The mean plasma steady‐state volume of distribution was calculated as 0.990 ± 0.530 L/kg and volume of distribution based on area was calculated as 3.23 ± 1.51 L/kg. The last measurable time for ketamine detection in plasma was 8.0 h with a mean concentration of 24.9 ± 11.8 ng/mL. Milk Tmax was detected at 0.67 ± 0.26 h with Cmax of 2495 ± 904 ng/mL. Milk AUC till the last time was 6593 ± 2617 ng·h/mL with mean AUC milk to AUC plasma ratio of 1.99 ± 2.15. The last measurable time that ketamine was detected in milk was 44 ± 10.0 h with a mean concentration of 16.0 ± 9.0 ng/mL.  相似文献   

18.
Ingvast‐Larsson, C., Högberg, M., Mengistu, U., Olsén, L., Bondesson, U., Olsson, K. Pharmacokinetics of meloxicam in adult goats and its analgesic effect in disbudded kids. J. vet. Pharmacol. Therap. 34 , 64–69. The pharmacokinetics and analgesic effect of the nonsteroidal anti‐inflammatory drug meloxicam (0.5 mg/kg) in goats were investigated. In a randomized, cross‐over design the pharmacokinetic parameters were investigated in adult goats (n = 8) after single intravenous and oral administration. The analgesic effect was evaluated in kids using a randomized, placebo controlled and blinded protocol. Kids received meloxicam (n = 6) once daily and their siblings (n = 5) got isotonic NaCl intramuscularly while still anaesthetized after cautery disbudding and injections were repeated on three consecutive days. In the adult goats after intravenous administration the terminal half‐life was 10.9 ± 1.7 h, steady‐state volume of distribution was 0.245 ± 0.06 L/kg, and total body clearance was 17.9 ± 4.3 mL/h/kg. After oral administration bioavailability was 79 ± 19%, Cmax was 736 ± 184 ng/mL, Tmax was 15 ±5 h, although the terminal half‐life was similar to the intravenous value, 11.8 ± 1.7 h. Signs of pain using a visual analogue scale were smaller in kids treated with meloxicam compared with kids treated with placebo on the first day after disbudding, but subsequently no difference in pain was noticeable. Plasma cortisol and glucose concentrations did not differ between the two groups.  相似文献   

19.
Lucas, M. F., Errecalde, J. O., Mestorino, N. Pharmacokinetics of azithromycin in lactating dairy cows with subclinical mastitis caused by Staphylococcus aureus. J. vet. Pharmacol. Therap. 33 , 132–140. Azithromycin is a time‐dependent antimicrobial with long persistence. The main characteristics of azithromycin suggest that it could be useful for treating bovine mastitis caused by Staphylococcus aureus. To investigate this possibility, its pharmacokinetic (PK) behavior was studied. Six Holstein lactating cows with subclinical mastitis were administered two 10 mg/kg intramuscular (i.m.) doses of azithromycin, with a 48‐h interval. Milk and plasma concentrations were measured by microbiological assay. The MIC90 was determined in 51 S. aureus isolations to calculate pharmacokinetic/pharmacodynamic (PK/PD) parameters. Milk maximal concentration (Cmax) was 7.76 ± 1.76 μg/mL (16.67 h post‐first administration) and 7.82 ± 2.18 μg/mL (14 h post‐2nd administration). In plasma Cmax was 0.18 ± 0.03 μg/mL (2 h post‐1rst administration) and 0.11 ± 0.03 μg/mL (14 h post‐2nd administration). Azithromycin was eliminated from the milk with a half‐life (T½λ) of 158.26 ± 137.7 h after 2nd administration, meanwhile plasma T½λ resulted shorter(13.97 ± 11.1 h). The mean area under the concentration vs. time curve from 0 to 24 h (AUC0‐24h) was 153.82 ± 34.66 μg·h/mL in milk secretion and 2.61 ± 0.59 μg·h/mL in plasma. Infection presence in the quarters had a significant effect (P < 0.05) on the area under the concentration vs. time curve from 0 to infinity (AUC0‐) and clearance from the mammary gland (Clmam/F). Moreover, it had influence on milk bioavailability (Fmilk), T½λ, AUC0‐ and mean residence time (MRT) in milk, which values resulted increased in mastitic quarters. In this study, it was determined that the production level and the mammary health status have an influence on PK parameters of azithromycin treatments in bovine mastitis.  相似文献   

20.
Knych, H. K., Casbeer, H. C., McKemie, D. S., Arthur, R. M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. vet. Pharmacol. Therap.  36 , 21–30. Butorphanol is a narcotic analgesic commonly used in horses. Currently, any detectable concentration of butorphanol in biological samples collected from performance horses is considered a violation. The primary goal of the study reported here was to update the pharmacokinetics of butorphanol following intravenous administration, utilizing a highly sensitive liquid chromatography‐mass spectrometry (LC‐MS) assay that is currently employed in many drug‐testing laboratories. An additional objective was to characterize behavioral and cardiac effects following administration of butorphanol. Ten exercised adult horses received a single intravenous dose of 0.1 mg/kg butorphanol. Blood and urine samples were collected at time 0 and at various times for up to 120 h and analyzed using LC‐MS. Mean ± SD systemic clearance, steady‐state volume of distribution, and terminal elimination half‐life were 11.5 ± 2.5 mL/min/kg, 1.4 ± 0.3 L/kg, and 5.9 ± 1.5 h, respectively. Butorphanol plasma concentrations were below the limit of detection (LOD) (0.01 ng/mL) by 48 h post administration. Urine butorphanol concentrations were below the LOD (0.05 ng/mL) of the assay in seven of 10 horses by 120 h post drug administration. Following administration, horses appeared excited as noted by an increase in heart rate and locomotion. Gastrointestinal sounds were markedly decreased for up to 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号