首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Records form Finnish Ayrshire cattle were used to estimate variances and covariances of milk traits by the restricted maximum likelihood (REML) method using the individual animal model (IAM). Two data sets were analyzed. The first data set consisted of 1423 sires and 16363 cows, of which 11911 had records on first lactation. The heritabilities estimated from this data set for milk yield, protein yield, protein content and fat content were 0.40, 0.31, 0.63 and 0.68, respectively. The second data set was a subset of first data set with herds with less than ten observations excluded and consisted of 1335 sires and 11262 cows with 8140 first, 5688 second and 3717 third lactation records. The heritability estimates from the second data set under a repeatability model for milk yield, protein yield, protein content and fat content were 0.30, 0.26, 0.59 and 0.66, respectively. The repeatability estimates for the same traits were 0.53, 0.51, 0.67 and 0.76, respectively. The second data set was also used to estimate genetic and phenotypic correlations among milk traits in first lactation. Both genetic and phenotypic correlations among protein yield and protein and fat content traits were small. The genetic correlation between milk yield and protein content was -0.61, between milk yield and fat content -0.50 and between protein content and fat content 0.67. Absolute values of phenotypic correlations for the same pairs of traits were somewhat smaller than respective genetic correlations.  相似文献   

2.
Dairy records from the Dairy Recording Service of Kenya were classified into low, medium and high production systems based on mean 305-day milk yield using the K-means clustering method. Milk and fertility records were then analysed to develop genetic evaluation systems accounting for genotype-by-environment interaction between the production systems. Data comprised 26,638 lactation yield, 3,505 fat yield, 9,235 age at first calving and 17,870 calving interval records from 12,631 cows which were descendants of 2,554 sires and 8,433 dams. An animal model was used to estimate variance components, genetic correlations and breeding values for the production systems. Variance components increased with production means, apart from genetic group variances, which decreased from the low to the high production system. Moderate heritabilities were estimated for milk traits (0.21–0.27) and fat traits (0.11–0.38). Low heritabilities were estimated for lactation length (0.04–0.10) and calving interval (0.03–0.06). Moderate heritabilities (0.25–0.26) were estimated for age at first calving, except under the high production system (0.05). Within production systems, lactation milk yield, 305-day milk yield and lactation length had high positive genetic correlations (0.52–0.96), while lactation milk yield and lactation length with age at first calving had negative genetic correlations. Milk yield and calving interval were positively correlated except under the low production system. The genetic correlations for lactation milk yield and 305-day milk yield between low and medium (0.48 ± 0.20 and 0.46 ± 0.21) and low and high production systems’ (0.74 ± 0.15 and 0.62 ± 0.17) were significantly lower than one. Milk yield in the low production system is, therefore, a genetically different trait. The low genetic correlations between the three production systems for most milk production and fertility traits suggested that sires should be selected based on progeny performance in the targeted production system.  相似文献   

3.
The objective of this study was to estimate genetic parameters and breeding values for the twinning rate of the first three parities (T1, T2 and T3) and 305‐day milk yield in first lactation (MY), using a four‐trait threshold‐linear animal model in Japanese Holsteins. Data contained 1 323 946 cows calving between 1990 and 2007. Twinning was treated as a binary character: ‘single’ or ‘twin or more’. Reported T1, T2 and T3 were 0.70%, 2.87%, and 3.73%, respectively. Individual 305‐day milk yield was computed using a multiple trait prediction for cows with at least eight test‐day records. (Co)variance components were estimated via Gibbs sampling for randomly sampled subsets. Posterior means of heritabilities for T1, T2 and T3 were 0.11, 0.16 and 0.14, respectively. Genetic correlations between parities were 0.92 or greater. Genetic correlations of MY with twinning rate were not ‘significant’ (i.e. their 95% highest probability density intervals contained zeros). Multiple births at different parities were considered as the same genetic trait. The average evaluations of T1 (T2) for sires born before 1991 was 0.48% (2.25%) compared with a mean of 0.76% (3.37%) for sires born after 1992. A recent increase in the reported twinning rate reflects the positive genetic trend for sires in Japanese Holsteins.  相似文献   

4.
研究利用武汉市58头公牛的971头女儿2006—2007年间的体型性状鉴定记录及2001—2007年间的生产性能测定记录,配合动物模型,采用REML方法进行参数估计,探讨了乳房性状、体型总分与产奶性状之间的关系。结果表明:乳房性状与产奶性状之间的表型相关较小。后乳房宽度与产奶性状之间存在强的遗传正相关(0.44~0.89)。后乳房高度与305 d产奶量(0.27)、305 d乳脂量(0.16)存在遗传正相关,而与305 d乳蛋白量(-0.32)存在遗传负相关。前乳房附着与产奶性状基本不存在相关。悬韧带与305 d产奶量存在遗传正相关(0.79)。乳房深度与305 d产奶量存在遗传负相关(-0.20)。体型总分与305 d产奶量、305 d乳脂量、305 d乳蛋白量存在较强的遗传正相关,故加强乳房性状和体型总分的选择对提高奶牛的生产性能有益。  相似文献   

5.
The objective of this study was to estimate genetic parameters of milk, fat, and protein yields, fat and protein contents, somatic cell count, and 17 groups and individual milk fatty acid (FA) contents predicted by mid‐infrared spectrometry for first‐, second‐ and third‐parity Holstein cows. Edited data included records collected in the Walloon region of Belgium from 37 768 cows in parity 1, 22 566 cows in parity 2 and 8221 in parity 3. A total of 69 (23 traits for three parities) single‐trait random regression animal test‐day models were run. Approximate genetic correlations among traits were inferred from pairwise regressions among estimated breeding values of cow having observations. Heritability and genetic correlation estimates from this study reflected the origins of FA: de novo synthetized or originating from the diet and the body fat mobilization. Averaged daily heritabilities of FA contents in milk ranged between 0.18 and 0.47. Average daily genetic correlations (averaged across days in milk and parities) among groups and individual FA contents in milk ranged between 0.31 and 0.99. The genetic variability of FAs in combination with the moderate to high heritabilities indicated that FA contents in milk could be changed by genetic selection; however, desirable direction of change in these traits remains unclear and should be defined with respect to all issues of importance related to milk FA.  相似文献   

6.
A study was conducted to estimate the record keeping, genetic selection, educational, and farm management effects on average milk yield per cow (AYC), milk fat percentage, bacterial score, and bulk tank somatic cell count (BTSCC) of dairy farms in the central region of Thailand. Farms were located in the provinces of Saraburi and Nakhon Ratchisima and were members of the Muaklek dairy cooperative. Records from individual animals were unavailable. Thus, farm records of milk yield, milk fat percentage, bacterial score, and BTCCC were collected from July 1, 2003 through June 30, 2006. Additional record keeping, genetic selection, education, and farm management information was collected through a questionnaire in May of 2006. Data from the Muaklek dairy cooperative and the questionnaire were then merged by a farm identification number. A single trait mixed model was used to analyze AYC, milk fat percentage, and BTSCC, while a log linear model was used to analyze bacterial score. Results showed that farms that kept records on individual animals had higher (P < 0.05) milk fat percentages and lower bacterial scores than farms that did not. Farms that used genetic information (EBV) and phenotypes when selecting sires were higher (P < 0.05) for milk fat percentage than farms that used only phenotypes and personal opinion. Farms milking cows with a single unit milking machine and by hand, had higher (P < 0.05) bacterial scores and BTSCC than farms using only a single or multi unit machine. Overall farms that kept individual animal records, used EBV when selecting sires, used a single method for collecting milk, and used family labor achieved higher performance from their herds than farms that did not.  相似文献   

7.
First-lactation test-day (TD) milk records of Luxembourg and Tunisian Holsteins were analysed for evidence of genotype by environment interaction (G × E). The joint data included 730 810 TD records of 87 734 cows and 231 common sires. Random regression TD sire models with fourth-order Legendre polynomials were used to estimate genetic parameters via within- and across-country analyses. Daily heritability estimates of milk yield from within-country analysis were between 0.11 and 0.32, and 0.03 and 0.13 in Luxembourg and Tunisia, respectively. Heritability estimates for 305-day milk yield and persistency (defined as the breeding value for milk yield on DIM 280 minus the breeding value on DIM 80) were lower for Tunisian Holsteins compared with the Luxembourg population. Specifically, heritability for 305-day milk yield was 0.16 for within- and 0.11 for across-country analyses for Tunisian Holsteins and 0.38 for within- and 0.40 for across-country analyses for Luxembourg Holsteins. Heritability for apparent persistency was 0.02 for both within- and across-country analyses for Tunisian Holsteins and 0.08 for within- and 0.09 for across-country analyses for Luxembourg Holsteins. Genetic correlations between the two countries were 0.50 for 305-day milk yield and 0.43 for apparent persistency. Moreover, rank correlations between the estimated breeding values of common sires for 305-day milk yield and persistency, estimated separately in each country, were low. Low genetic correlations are evidence for G × E for milk yield production while low rank correlations suggest different rankings of sires in both environments. Results from this study indicate that milk production of daughters of the same sires depends greatly on the production environment and that importing high merit semen for limited input systems might not be an effective strategy to improve milk production.  相似文献   

8.
Information about genetic parameters is essential for selection decisions and genetic evaluation. These estimates are population specific; however, there are few studies with dairy cattle populations reared under tropical and sub‐tropical conditions. Thus, the aim was to obtain estimates of heritability and genetic correlations for milk yield and quality traits using pedigree and genomic information from a Holstein population maintained in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows as well as the genotypes for 57 368 single nucleotide polymorphisms from 755 of these cows were used. Covariance components were estimated using the restricted maximum likelihood method under a mixed animal model, considering a pedigree‐based relationship matrix or a combined pedigree‐genomic matrix. High heritabilities (around 0.30) were estimated for lactose and protein content in milk whereas moderate values (between 0.19 and 0.26) were obtained for percentages of fat, saturated fatty acids and palmitic acid in milk. Genetic correlations ranging from −0.38 to −0.13 were determined between milk yield and composition traits. The smaller estimates compared to other similar studies can be due to poor environmental conditions, which may reduce genetic variability. These results highlight the importance in using genetic parameters estimated in the population under evaluation for selection decisions.  相似文献   

9.
Interactions of the regression of preweaning ADG on dam milk yield and quality with breed group and forage environment were evaluated in a two-phase study. Phase I consisted of milk yield and quality and calf gain records from 1989 to 1991 for purebred Angus (n = 64) and Brahman (n = 62) cows mated to sires of both breeds. Phase II consisted of milk yield and quality and calf gain records from 1991 to 1997 for Angus (n = 94), Brahman (n = 85), Angus x Brahman (n = 86) and Brahman x Angus (n = 93) mated to Polled Hereford sires. In Phase I, forage environments included common bermudagrass and endophyte-infected tall fescue. In Phase II, forage environments included common bermudagrass and endophyte-infected tall fescue (1991 to 1995) and a rotational system of both forages (1995 to 1997) in which each forage was grazed during its appropriate growing season, usually June through October for bermudagrass and November through May for tall fescue. Milk yield was estimated monthly six times during lactation from spring through fall and converted to a 24-h basis. Milk fat, milk protein, and somatic cell count were analyzed by a commercial laboratory. In Phase I, the relation of preweaning ADG to milk yield, milk fat yield, and protein yield was greater (P < 0.05) in Brahman cows on bermudagrass than Angus on bermudagrass. The regression of preweaning ADG on milk yield in Phase I was greater (P < 0.05) for cows on tall fescue than cows which grazed bermudagrass. In Phase II, the relation of preweaning ADG to milk yield, milk fat yield, and milk protein yield was greater or tended to be greater (P < 0.01, P < 0.11, P < 0.01, respectively) in purebred cows compared to reciprocal-cross cows. The regression of preweaning ADG on milk yield and milk protein yield was greater (P < 0.05) on tall fescue than bermudagrass in Phase II. These results suggest that the influence of milk yield and quality on calf growth may differ among breed types and production system, and the efficacy of genetic improvements in milk traits may depend on the breed type and forage environment.  相似文献   

10.
Cows were tested for milkability with standardized milking equipment. Percentage of milk from the forequarters (FQ%), average milk flow rate (AMF) in kg min?1, quantity of hand-stripped milk (HSM) and milk yield at test day (MTD) were recorded. Records of 10 823 daughters in the first lactation of 352 sires were used to investigate environmental influences and to estimate genetic parameters. Significant effects were test season and herd production level for AMF and HSM, test person, milking equipment on the farm, month in lactation, age at calving and region for FQ%, AMF and HSM. The heritabilities were 0.34 for FQ%, 0.41 for AMF and 0.10 for HSM. The genetic correlations of MTD were 0.13 with FQ%, 0.23 with AMF and ?0.20 with HSM. The genetic correlations between FQ% and AMF and all genetic correlations with HSM were negative. Selection indices with information on average deviations of daughters' MTD, FQ%, AMF and HSM from corresponding region — herd level — season means and different economic weights were used to predict selection indices for 239 sires. The predicted breeding values were compared with simple daughter averages. The correlations were high, but large differences in ranks occurred for individual sires. Correcting AMF for milk yield removes some genetic variation in milk flow and can mask genetic differences between sires.  相似文献   

11.
Genetic parameters for the prevalence of abomasal displacement and for milk yield traits were estimated using a data set of 3578 cows. The animals originated from 50 farms near Hanover being under the official milk recording scheme. At these farms all cases of abomasal displacement in German Holsteins were registered from July 2001 to January 2003. Using REML heritability estimates in linear animal models were h2 = 0.034 +/- 0.014, h2 = 0.017 +/- 0.013 and h2 = 0.029 +/- 0.011 for all cases of abomasal displacement, leftsided abomasal displacement and rightsided abomasal displacement, respectively. Additive genetic correlations between all cases of abomasal displacement and milk yield traits were small, ranging from rg = -0.20 (fat content) to rg = 0.08 (milk kg). However, there was a highly positive additive genetic correlation between leftsided abomasal displacement and milk yield of rg = 0.683 +/- 0.227. Leftsided abomasal displacement was correlated additive genetically to fat and protein yield, fat and protein content with rg = 0.595 +/- 0.297, r9 = 0.653 +/- 0.250, rg = -0.768 +/- 0.3280 und rg = -0.643 +/- 0.354, respectively. The additive genetic correlation to the ratio between fat and protein content was rg = -0.585 +/- 0.470. For rightsided abomasal displacement, additive genetic correlations were of similar size but with reversed signs. The estimates obtained for the residual correlations were negligibly small throughout.  相似文献   

12.
An initial study on the inheritance of first and second lactation dairy production in Australian Black and White cows is presented for the states of New South Wales, Victoria, Queensland and Tasmania. A total of 116,043 first and 14,767 second lactation records for 326 young and 415 old, and 200 young and 31 old sires, respectively, were analyzed using a multivariate Restricted Maximum Likelihood procedure. Analyses were carried out for a mixed model fitting herd-year-seasons and proven sires as fixed, young sires as random effects and age at calving as a linear and quadratic covariable. In addition, the effects of lactation length and month of calving were investigated.The within-HYS phenotypic variation was high with distinct differences between states. As a consequence, heritability estimates were low compared to literature values. Pooled estimates were 0.17, 0.15, 0.38, 0.13 and 0.25 for first lactation milk yield, fat yield, fat content, protein yield and protein content, respectively. Correlations among yields were high, ranging from 0.71 to 0.91 genetically, and from 0.90 to 0.95 phenotypically. Milk yield was negatively related to concentration of constituents, genetic and phenotypic correlations being of the order of ?0.4 and ?0.2, respectively.Heritabilities for second lactation milk yield, fat yield and fat content were 0.18, 0.17 and 0.45, respectively, of similiar magnitude to first lactation values. The respective genetic correlations between first and second lactation were 0.96, 0.98 and 0.98, suggesting that production in both lactations is genetically identical. These high estimates can be attributed to the method of analysis, which accounts for culling based on first lactation performance.  相似文献   

13.
Genetic variability and genetic trends for 305-day milk yield (MY), 305-day fat yield (FY), and average 305-day fat percent (FP) were evaluated using monthly test-day records from first-lactation cows collected from 1991 to 2005 in 92 farms located in Central Thailand. Estimates of variance and covariance components and breeding values (EBV) were obtained using a multiple-trait animal model. Fixed effects were contemporary group (herd–year–season), calving age, additive genetic group as a function of Holstein fraction, and non-additive genetic group as function of heterosis effect. Random effects were animal and residual. Program ASREML was used to perform computations. Estimates of heritabilities were 0.38 ± 0.10 for MY, 0.25 ± 0.11 for FY, and 0.22 ± 0.11 for FP. Although the difference between the mean MY for cows in 1991 and 2005 was 324.1 kg, the regression of mean cow EBV for MY on year was 6.5 kg/year. Differences between mean cow EBV for FY and FP in 1991 and 2005 and their corresponding regressions of mean FY and FP on year were all near zero. Similarly, mean EBV for sires and dams of cows also showed near zero trends during these years. A factor contributing to the near complete absence of genetic trends was likely the variety of criteria used by producers to choose sires and to keep dams in addition to EBV (e.g., availability of semen, reproductive ability, adaptation to hot and humid conditions). It also appears that high percent Holstein cows failed to reach their production potential under the management, nutrition, and hot and humid climatic conditions in this tropical region. Changes in nutrition and management would be needed for high percent Holstein cows to show an upward trend in Central Thailand.  相似文献   

14.
Purebred Holstein-Friesian cows are the main exotic breed used for milk production on large, medium, and small farms in Kenya. A study was undertaken on seven large-scale farms to investigate the genetic trends for milk production and fertility traits between 1986 and 1997 and the genetic relationships between the traits. This involved 3,185 records from 1,614 cows, the daughters of 253 sires. There was a positive trend in breeding value for 305-d milk yield of 12.9 kg/ yr and a drop in calving interval of 0.9 d/yr over the 11-yr period. Bulls from the United States (U.S.) had an average total milk yield breeding value 230 kg higher than the mean of all bulls used; Canada (+121 kg), Holland (+15 kg), the United Kingdom (U.K., 0 kg), and Kenya (-71 kg) were the other major suppliers of bulls. Average breeding values of bulls for calving interval by country of origin were -1.31 (Canada), -1.27 (Holland), -0.83 (U.S.), -0.63 (Kenya), and 0.68 d (U.K.). The genetic parameters for 305-d milk yield were 0.29 (heritability), 0.05 (permanent environment effect as proportion of phenotypic variance) resulting in an estimated repeatability of 0.34. Using complete lactation data rather than 305-d milk yield resulted in similar estimates of the genetic parameters. However, when lactation length was used as a covariate heritability was reduced to 0.25 and the permanent environment effect proportion increased to 0.09. There was little genetic control of either lactation length (heritability, 0.09) or calving interval (heritability, 0.05); however, there were strong genetic correlations between first lactation milk yield, calving interval, and age at first calving.  相似文献   

15.
Calving records from the Animal Breeding Center of Iran collected from January 1990 to December 2007 and comprising 207,106 first calving events of Holsteins from 2,506 herds were analysed using univariate and bivariate linear sire models to estimate heritabilities and genetic correlations between age at first calving (AFC) and productive performance. Average AFC was 26.48 months in this study. The peak in the frequency distribution of AFC clearly exists coinciding with cows calving for the first time at approximately 25 months of age. Heritability estimate for AFC was 0.34 which was greater than the corresponding values for productive traits. The heritability estimates were low to medium for productive traits which ranged from 0.17 to 0.26 for cows in their first calvings. Except for fat and protein percentages of milk, phenotypic and genetic correlations between AFC and productive performance traits were low to moderately negative. Range of genetic correlations between productive traits was −0.53 to 0.99. Reduction of age at first calving appeared to have a negative effect on first lactation protein and fat percentages; however, it had positive effects on milk yield, fat yield, protein yield and their mature equivalents. It seems that reducing age at first calving to 24–25 months is probably more profitable than reducing age at first calving to an earlier time in Iranian conditions.  相似文献   

16.
The objective of this study was to analyse the heritabilitiy of the lactational incidence of displaced abomasum (DA) and the relationships of DA with milk production traits in German Holstein cows. Data were recorded between February 1999 and January 2000 in cooperation with five veterinary practitioners. Their veterinary practices were located in the northern part of Lower Saxony. The investigation included 160 dairy farms under the official milk-recording scheme with 9,315 cows. The lactational incidence of the left abomasal displacement amounted to 1.21%, and of the right abomasal displacement to 0.41%, respectively. The linear heritability estimates for the lactational incidences of left and right DA were h(2) = 0.05 +/- 0.012 and h(2) = 0.004 +/- 0.005, respectively. Using the Dempster-Lerner-transformation the corresponding heritabilities were h(2) = 0.53 and 0.09, respectively. Milk losses for the lactation when DA was diagnosed were significant and reached 1016 kg milk, 41 kg fat, 36 kg protein and 0.07% protein. Fat content significantly increased by 0.18%. The analysis could not show significant differences between cows diagnosed with DA and cows not diagnosed with DA in the 305-day milk production traits of the lactation preceding the diagnosis of DA. There was also no indication for an unequal distribution of breeding values for milk performance traits between cows with and without DA. The additive genetic correlations between 305-day milk performance and left DA were low. The results indicated that cows with a high milk production and superior breeding values for milk performance were not exposed to an increased risk for DA.  相似文献   

17.
We estimated the genetic parameters of fat‐to‐protein ratio (FPR) and the genetic correlations between FPR and milk yield or somatic cell score in the first three lactations in dairy cows. Data included 3 079 517 test‐day records of 201 138 Holstein cows in Japan from 2006 to 2011. Genetic parameters were estimated with a multiple‐trait random regression model in which the records within and between parities were treated as separate traits. The phenotypic values of FPR increased soon after parturition and peaked at 10 to 20 days in milk, then decreased slowly in mid‐ and late lactation. Heritability estimates for FPR yielded moderate values. Genetic correlations of FPR among parities were low in early lactation. Genetic correlations between FPR and milk yield were positive and low in early lactation, but only in the first lactation. Genetic correlations between FPR and somatic cell score were positive in early lactation and decreased to become negative in mid‐ to late lactation. By using these results for genetic evaluation it should be possible to improve energy balance in dairy cows.  相似文献   

18.
SUMMARY: Genetic and phenotypic correlations between the first lactation and lifetime yields of milk, fat and protein, herdlife, productive life and number of lactations initiated in the herd were estimated from records of 24,231 progeny of 234 young and 119 proven Holstein sires in 1791 herds using a multivariate REML technique to fit a sire model with relationships among young sires. Proven sires were fitted as fixed effects. Genetic correlations between first lactation and lifetime yields were highest for milk (0.666) followed by fat (0.660) and protein (0.512). Genetic as well as phenotypic correlations of herdlife, productive life and number of lactations were higher with first lactation milk yield than with first lactation fat and protein yields. Direct selection for higher lifetime yields would not be effective because of low heritabilities. However the high, positive genetic correlations of lifetime yields of milk and fat with first lactation yields suggested that first lactation yields might be used for indirect selection for higher lifetime yields. ZUSAMMENFASSUNG: Beziehung zwischen Erstlaktations- und Lebensleistung bei Holstein-Kühen Zwischen Erstlaktations- und Lebensleistung für Milch, Fett, Protein, Verbleibedauer, produktiver Lebensdauer und Zahl von Laktationen in der Herde wurden von 24.291 T?chtern, 234 Jung- und 119 geprüften Holsteintieren in 1.791 Herden genetische Beziehungen gesch?tzt, wobei eine multivariate REML-Technik zur Analyse eines Stiermodells mit Verwandtschaft zwischen jungen Stieren angewendet worden ist. Die geprüften Stiere wurden als fixe Effekte angesehen. Genetische Korrelationen zwischen Erstlaktation und Lebensleistung war am h?chsten für Milch (0,666), gefolgt von Fett (0,660) und Protein (0,512). Genetische und ph?notypische Korrelationen mit Verbleibedauer, produktiver Lebensdauer und Zahl der Laktationen waren ebenfalls für Erstlaktations-milchmenge h?her als bei Fett und Protein. Direkte Selektion auf h?here Lebensleistung würde wegen der niedrigen Heritabilit?t nicht wirksam sein. Allerdings k?nnten die hohen positiven genetischen Korrelationen des Merkmals mit Erstlaktationsleistungen diese als geeignetes indirektes Selektionskriterium für h?here Lebensleistung anzeigen.  相似文献   

19.
The epidemiology and genetic variability of clinical mastitis were examined. The data consisted of 70,775 Finnish Ayrshire cows. All cows were from milk recorded herds and calved during 1983. Each cow was under observation from the date of calving for 305 days. Only clinical mastitis diagnosed and treated by a veterinarian during the farm visits were taken into account. The lactation incidence rate of clinical mastitis (LIR) was 5.4 %. The cows calving in April-May had the highest LIR, but the seasonal variation was relatively small. The LIR increased with parity from the first to sixth parity. The cows treated for parturient paresis, infertility or ketosis had a higher risk of clinical mastitis than cows not treated for these diseases. The LIR was higher in herds with a high milk production level. The highest odds ratio estimated from parameters of the logit model was 14.8. The heritability estimates for clinical mastitis on the binomial scale were 3.2 % in parity 1, 1.6 % in parity 2, 0.6 % in parity 3 and 4, and 0.8 % in all parities (corresponding to 19.7 %, 8.3 %, 2.6 % and 3.8 % on the normal scale). These estimates indicate sufficient assurance for progeny testing of bulls and some possibilities of genetic selection against clinical mastitis. Genetic correlations between clinical mastitis and 305-days milk yield were 0.39 in parity 1, 0.51 in parity 2, 0.18 in parity 3–4 and 0.58 in all parities. This means that the best sires for milk yield had daughters with a higher LIR for clinical mastitis than the other sires.  相似文献   

20.
Various health problems in dairy cows have been related to the magnitude and duration of the energy deficit post partum. Energy balance indicator traits like fat/protein ratio in milk and body condition score could be used in selection programmes to help predicting breeding values for health traits, but currently there is a lack of appropriate genetic parameters. Therefore, genetic correlations among energy balance, fat/protein ratio, and body condition score, and mastitis, claw and leg diseases, and metabolic disorders were estimated using linear and threshold models on data from 1693 primiparous cows recorded within the first 180 days in milk. Average daily energy balance, milk fat/protein ratio and body condition score were 8 MJ NEL, 1.13 and 2.94, respectively. Disease frequencies (% cows with at least one case) were 24.6% for mastitis, 9.7% for metabolic disorders and 28.2% for claw and leg diseases. Heritability estimates were 0.06, 0.30 and 0.34 for energy balance, fat/protein ratio and body condition score, respectively. For the disease traits, heritabilities ranged between 0.04 and 0.15. The genetic correlations were, in general, associated with large standard errors, but, although not significant, the results suggest that an improvement of overall health can be expected if energy balance traits are included into future breeding programmes. A low fat/protein ratio might serve as an indicator for metabolic stability and health of claw and legs. Between body condition and mastitis, a significant negative correlation of -0.40 was estimated. The study provides a new insight into the role energy balance traits can play as auxiliary traits for robustness of dairy cows. It was concluded that both, fat/protein ratio and body condition score, are potential variables to describe how well cows can adapt to the challenge of early lactation. However, the genetic parameters should be re-estimated on a more comprehensive data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号