首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolates of Phytophthora cambivora, P. cinnamomi, P. citricola, P. europaea, P. quercetorum and two unidentified species were tested for their pathogenicity to eastern US oak species by root and stem inoculations. Experiments were conducted during two different periods and included 1‐, 2‐ and 20‐year‐old oaks grown under greenhouse and field conditions. Species of Phytophthora were pathogenic in varying degrees to the oak species tested. All species were pathogenic to fine and taproots of at least one oak species. The fine root damage caused by the species of Phytophthora ranged from 9 to 55% when compared to the controls. Roots were more susceptible during the fall inoculation period than the summer. With exception of Phytophthora sp1 and P. quercina‐like, all species of Phytophthora were pathogenic to oak stems with P. cinnamomi and P. citricola being the most aggressive. Quercus montana and Q. rubra were the most susceptible oak species to stem inoculation. Lesion sizes were considerably larger when 20‐year‐old trees were inoculated. Generally, no significant differences in lesion sizes were detected in greenhouse tests when the summer and fall inoculation periods were compared. However, on 2‐year‐old field‐grown seedlings, lesion sizes were considerably smaller or not significantly different from controls during the fall inoculation period, suggesting lower, late season temperatures may restrict lesion development.  相似文献   

2.
Thirty‐two oak stands in southern Sweden, 27 with predominantly declining trees and five with a higher proportion of healthy trees were investigated regarding the presence of soilborne Phytophthora species. Phytophthora quercina, an oak‐specific fine root pathogen, was isolated from rhizosphere soil samples in 10 of the 27 declining stands. Additionally, P. cactorum and P. cambivora were recovered from one stand each. No Phytophthora species were isolated from the healthy oak stands. The soil conditions at the sites from which Phytophthora spp. were recovered ranged from mesic sediments to moraines, with clayey to silty textures and with soil pH (BaCl2) between 3.5 and 5.0. The results show that P. quercina is geographically widespread in oak stands in southern Sweden and indicate that this pathogen may be one of the factors involved in oak decline in Northern Europe as has already been shown for western, Central and parts of southern Europe.  相似文献   

3.
A survey on the occurrence of Phytophthora species in oak ecosystems in Austria was conducted from April to May 1999 and in June 2000. The investigations were carried out at 35 study sites distributed throughout the zone of oak forests in eastern Austria. Four oak species, including Quercus robur, Q. petraea, Q. cerris and Q. pubescens were considered in the survey. Rhizosphere soil samples were taken from sample trees, which consisted of healthy and declining trees as indicated by their crown transparency. Young oak leaflets were used as baits to recover Phytophthora species. The assemblage of Phytophthora spp. detected in Austrian oak forests consisted of five species, including Phytophthora quercina, P. citricola, P. gonapodyides, P. europaea and P. syringae. P. quercina and P. citricola were isolated from 11 and seven sites, respectively, and were thus the most common and most widely distributed species. The three other species were recovered only sporadically. P. citricola could be separated into two morphologically and genetically well‐characterized types (A and B). Phytophthora species, in particular the common P. quercina and P. citricola occurred on sites showing a wide variety of soil types, soil textures and moisture classes. There was mild evidence for connection between deteriorating crown status and the presence of Phytophthora spp. Furthermore, significant differences in contents of magnesium, as well as calcium, aluminium, nitrogen and carbon at different soil depths (0–10, 10–20 and 20–40 cm) were detected between Phytophthora‐infested and Phytophthora‐free sites. The results of the present study provide circumstantial evidence that Phytophthora species are involved in oak decline at certain sites in Austria.  相似文献   

4.
Influence of water status of oak trees (Quercus rubra) on the development of Phytophthora cinnamomi lesions was studied. On agar media or excised inner bark, growth of P. cinnumomi was reduced by low water potentials. In contrast, on voung saplings or mature oak trees the development of P. cinnamomi lesions was not affected during a period of water stress. But after the end of the water stress treatment, susceptibility of the young saplings to P. cinnamoni increased.  相似文献   

5.
Soil‐borne species of Phytophthora were isolated from 19 of 30 examined oak forest areas in Italy. The frequency of isolated Phytophthora spp. (35.2%) was significantly correlated with soil pH and longitude of the sites. Eleven Phytophthora species were detected. Phytophthora cambivora, P. cinnamomi and P. cactorum were recovered from sites in central and southern Italy whereas P. quercina was isolated in the northern and central part of the country. Phytophthora citricola occurred all over Italy. Phytophthora quercina was the only species significantly associated with declining oak trees.  相似文献   

6.
Within the scope of a research project on the condition of roots of declining oaks (Quercus robur, Quercus petraea), samples of fine roots and surrounding soil, specimens of stripe cankers on the stem base, and samples of stream water were examined for the presence of Phytophthora species using both baiting methods and selective agar media. At 27 sites in Germany (Bavaria, Rheinland-Pfalz, Schleswig-Holstein), Switzerland, Hungary, Italy and Slovenia the following species were isolated (mainly from soil): Phytophthora citricola, Phytophthora cactorum, Phytophthora cambivora, Phytophthora gon-apodyides, Phytophthora undulata, a species with affinity to Phytophthora drechsleri, and two additional species with close affinity to the Phytophthora cactorum group. Moreover, Pythium group P, Pythium anandrum, Pythium chamaehyphon, and many other Pythium species that have not yet been identified could be recovered. In a soil infestation test most isolates induced dieback of long root tips and necrotic lesions in the root cortex and at the root collar of Quercus robur seedlings. All Phytophthora species tested and Pythium group P caused cortical necrosis after stem inoculation of young Quercus robur trees. It could be shown in vitro that Phytophthora gonapodyides and Pythium group P were able to produce a wilting toxin. Nitrogen input and climatic changes are discussed as predisposing factors for root damage observed in the field.  相似文献   

7.
The foliage of seven different genera of conifers including 10 species and 17 different cultivars was tested for its susceptibility against two isolates of Phytophthora lateralis from two different lineages. Detached green shoot tips were floated in zoospore suspension and the lesion size was assessed after 7 days. xCupressocyparis leylandii, Juniperus media and Cedrus deodara were the most resistant hosts, whereas Chamaecyparis obtusa was most susceptible. Thuja plicata and Thuja occidentalis, Chamaecyparis pisifera and Chamaecyparis lawsoniana, Taxus baccata and Cupressus macrocarpa were of medium susceptibility. For comparison, a small subset of four hosts was also tested for stem susceptibility. The stems of whole potted plants were inoculated with the same two isolates as used for the leaf susceptibility tests. Chamaecyparis lawsoniana was highly susceptible, whereas the stems of xC. leylandii, T. baccata and T. plicata were not susceptible. Most conifers were similarly affected by both tested lineages of P. lateralis although the isolate of the Pacific Northwest lineage caused slightly longer lesions on C. lawsoniana in the stem inoculation tests.  相似文献   

8.
The belowground effects of Phytophthora cinnamomi on 1‐year‐old saplings of two common oak species in mid‐Atlantic US forests, white (Quercus alba) and red oak (Q. rubra), were examined after incubation in pathogen‐infested soilless potting mix. Fine root lengths (0–1.5 mm in diameter) of both oak species were quantified after incubation at successive 30‐day intervals up to 300 days, for a total of 10 incubation periods. In addition, colony‐forming units (CFU) of P. cinnamomi were quantified after white oak saplings were incubated in infested soilless potting mix at different temperature/duration combinations that reflect soil conditions present in the mid‐Atlantic United States. Impact of P. cinnamomi on fine root lengths of red and white oak saplings varied considerably over time. Significant periods of fine root loss occurred primarily during spring, when bud break and leaf flush began for both oak species. Red oaks had 17% fine root loss on average, while white oaks appeared more resistant to P. cinnamomi infection with a 2% decrease in fine roots over the course of the experiment. Phytophthora cinnamomi CFU declined significantly with exposure to all incubation temperatures except 8°C. This was in contrast to in vitro experiments, where the optimum temperature for mycelial growth was determined to be 21°C and above. Significant fine root loss caused by P. cinnamomi depended on plant phenology and the oak species tested. Extreme soil temperatures have a significant adverse impact on temporal changes of P. cinnamomi population.  相似文献   

9.
The susceptibility of oak seedlings (Quercus palustris, Quercus robur, Quercus rubra) and chestnut seedlings (Castanea sativa) to Phytophthora cinnamomi was tested. The dynamics of infection was examined in plant material raised in a rhizotron. In the oak species, primary root tissues were susceptible whereas secondary cortical tissues showed some resistance to P. cinnamomi. Secondary cortical tissues of the tap root in C. sativa were susceptible. Inoculations with P. cinnamomi were performed both in situ and on excised roots of mature Q. rubra. In both cases, the resistance of Q. rubra roots and shoots was negatively correlated with diameter at the inoculation point. Small roots (l–5-cm diameter) were resistant, whereas collar and trunk were susceptible. In contrast to oak, small excised roots of mature C. sativa (0.7–2-cm diameter) were susceptible to P. cinnamomi. This may explain why P. cinnamomi does not induce a decline of the attacked oaks, but rather a trunk canker.  相似文献   

10.
This study was initiated to investigate the possible role of Phytophthora species in white oak decline (Quercus alba) in southern Ohio at Scioto Trail State Forest. Surveys demonstrated the presence of four species of Phytophthora including one novel species. By far, the most common species was P. cinnamomi; P. citricola and P. cambivora were isolated infrequently. In few instances, P. cinnamomi was isolated from fine roots and necroses on larger roots. No special pattern of incidence was found, but P. cinnamomi was more commonly isolated from greater Integrated Moisture Index values suggesting moist lower bottomlands favour this Phytophthora species. When tree crown condition was examined relative to the presence of Phytophthora, no significant association was found. However, roots of declining P. cinnamomi‐infested trees had 2.5 times less fine roots than non‐infested and healthy trees, which was significantly different. The population densities of P. cinnamomi from declining trees were significantly greater than from healthy trees, suggesting increased pathogen activity that has the potential to cause dieback and decline and possibly the cause of a reduced fine root amount found on declining trees.  相似文献   

11.
The aim of this research was to study the changes in net photosynthesis and stomatal conductance values in 3‐year‐old cork oak and holm oak seedlings growing in natural conditions and inoculated with Apiognomonia quercina, Biscogniauxia mediterranea, Botryosphaeria corticola and Pleurophoma cava. Throughout the 4‐month experimental period, the evolution of visual external symptoms and the values of physiological variables were periodically recorded. All pathogens caused stem lesions around the infection point; however, the lesions caused by B. corticola were longer in both oak species. On cork oak seedlings, all pathogens induced a significant and gradual reduction in net photosynthesis and stomatal conductance values, whereas other physiological disturbances were induced only by B. corticola infections on holm oak seedlings.  相似文献   

12.
Phytophthora root rot is described for the first time killing sugar pine (Pinus lambertiana) in a seed orchard and four species of true fir (Abies spp.) in a forest nursery. P. cactorum was recovered from true firs and P. megasperma was recovered from sugar pine. P. cryptogea was recovered from sugar pine and true fir but isolates from the two locations differed from each other in pathogenicity and colony appearance. Isolates recovered from these hosts and isolates of 6 Phytophthora species previously recovered from Douglas-fir (Pseudotsuga menziesii) were then tested for pathogenicity on seedlings of 9 Northwest conifers. P. megasperma Group 1, P. cryptogea, and P. cinnamomi were pathogenic to all tree species except western redcedar (Thujaplicata). Western hemlock (Tsuga heterophylla) and true firs were susceptible to most species tested; ponderosa (P. ponderosa) and sugar pines were damaged only by P. cryptogea and P. cinnamomi; western redcedar was resistant to all isolates.  相似文献   

13.
The four main morphotypes of Holm oak (Quercus ilex subsp. ballota) present in Andalusia (expansa, macrocarpa, microcarpa and rotundifolia) were infected with Phytophthora cinnamomi to determine their susceptibility to the root pathogen. No large differences were found among the four morphotypes in the infection of roots, which always showed a high degree of necrosis. However, the different responses of the foliage to infection separated the four morphotypes of Holm oak into three groups: very susceptible (microcarpa), susceptible (expansa) and moderately susceptible (rotundifolia and macrocarpa). The natural hybrid Q. ilex ballotaQ. faginea exhibited a low level of root and foliar symptoms when infected with P. cinnamomi. Quercus faginea could be considered as a source of resistance to P. cinnamomi in future breeding programmes.  相似文献   

14.
Potassium phosphite (PP) formulations registered as fertilizers are now prohibited in Spain. Therefore, we evaluated the systemic fungicide fosetyl‐aluminium (fos‐al) in comparison with PP, against root rot caused by Phytophthora cinnamomi in Quercus woodlands. The direct effect of both systemic fungicides was evaluated in vitro on P. cinnamomi mycelial growth. Protection of cork and holm oak against infection was also evaluated in planta. Metalaxyl was included in both in vitro and in planta experiments for comparison purposes. At 100 μg/mL, PP totally inhibited colony radial growth, in comparison with 75% achieved by fos‐al. At doses recommended by manufacturers, with fos‐al and metalaxyl applications, root symptoms remained similar to the uninfected control levels. Based on these results, fos‐al is a candidate substitute product for PP in Quercus woodlands for control of Phytophthora oak root disease.  相似文献   

15.
An increasing decline and mortality of cork oak trees have been recently observed in central Italy and Sardinia Island. Following surveys conducted in three declining cork oak forests, a Phytophthora species was consistently isolated from soil samples collected from trees displaying different level of decline. Based on morphological features, growth rates at different temperatures and analysis of DNA sequences of the ITS region, all isolates were identified as Phytophthora cinnamomi Rands. This pathogen caused large brownish lesions on inoculated freshly cut branches of cork oak. It was re‐isolated from all infected tissues. These findings represent the first report of P. cinnamomi on cork oak trees in Italy.  相似文献   

16.
Sudden oak death, caused by Phytophthora ramorum, has resulted in high levels of coast live oak (CLO) mortality. However, some CLO survive in areas with high disease pressure and may thus be resistant. We tested the hypothesis that such field‐resistant trees contain constitutively higher levels of phenolics than susceptible trees. Phloem was sampled from the trunks of two groups of trees (one previously inoculated, one naturally infected with P. ramorum) categorized over the course of several years as putatively resistant (PR, no symptoms), in remission (IR, showed symptoms but then recovered) and symptomatic (S). Individual and total soluble phenolics from these trees were quantified. There were no significant differences in individual or total soluble phenolics between groups of naturally infected trees. However, inoculated PR and IR trees were characterized by higher constitutive levels of ellagic acid, a tyrosol derivative, and an unidentified phenolic than S trees. Ellagic acid and tyrosol‐like compounds in CLO phloem are promising resistance biomarker candidates.  相似文献   

17.
The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium distichum was selected as a control. The survival rates of seedlings were calculated, the photosynthetic indices were detected by Licor-6400 photosynthetic system instrument, and the root activities of seedlings were tested by the method of triphenyltetrazolium chloride (TTC). Results showed that: 1) By experiencing flooding for 76 d and recovering for 60 d after water was drained off, all seedlings survived under the shallow-drowning treatment. None of Q. falcata seedlings died in the deep-drowning treatment until the 49th day. The survival rate of Q. falcata in the deep-drowning treatment was 30%. 2) Within 61 d of waterlogging treatments, the net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) showed a tendency of declining, but intercellular concentration of CO2 (Ci) increased. With the prolongation of flooding stress, the extents of variation for all indices under deep-drowning treatment were larger than those under the shallow-drowning treatment. The variation of Q. falcata in flooding stress was larger than that of Q. nuttallii. 3) The root vigor and alcohol dehydrogenase (ADH) activities were detected at the 61st day in flooding stress. Waterlogging obviously inhibited root activities. Shallow-drowning made root vigor of Q. nuttallii decreased by 11.7%, and for Q. falcata, by 51.88%. Shallow-drowning treatment had no remarkable effects on ADH activities of seedlings, but deep-drowning increased those of Q. nuttallii seedlings by 227.24%, and decreased those of Q. falcata seedlings by 59.22% in the meantime. We conclude that Q. nuttallii had a stronger waterlogging resistance than Q. falcata, but weaker than T. distichum.  相似文献   

18.
Although oaks (Quercus spp.) have historically dominated much of the forest land in eastern North America, a great deal of fragmentary and sometimes anecdotal evidence suggests that they have been yielding dominance in recent decades to other, typically more shade-tolerant species. Using FIA data, our work formally quantifies the change in oak abundance in the eastern U.S. during the period of 1980-2008. The results indicate that most areas in the eastern U.S. experienced some decline in oak abundance, but the decrease was not universal either geographically or among species. Declines were especially marked in the Central Hardwood Region, which lost oak abundance on 81% its forested area as measured by importance value (IV). Areas with a high oak abundance were more likely to see a reduction in abundance. Among all 25 species analyzed, eight species decreased significantly in IV while two increased. Both the top two most prevalent white oak species (white oak (Quercus alba) and post oak (Quercus stellata)) and red oak species (northern red oak (Quercus rubra) and black oak (Quercus velutina)) had significant decreases in density and IV. Water oak (Quercus nigra) is one of the red oak species that had a near universal increase of its abundance throughout its native range (83% of area). This study provided a comprehensive quantification of the dynamic of oak species in a regional-wide geographic context, which will provoke forest researchers and managers to revisit the oak decline problem by using knowledge from other regions and other species.  相似文献   

19.
Brassicaceous plants rich in glucosinolates have been used as biofumigants for the management of soilborne pathogens. Efficacy of Brassica plant tissue has mainly been attributed to toxic isothiocyanates released upon the hydrolysis of glucosinolates. Management of Phytophthora cinnamomi, the causal agent of oak root rot in rangeland ecosystems using biofumigation, is promising, but requires further validation. The biofumigation activity of 14 brassicaceous plants was evaluated under experimental conditions. All evaluated plants rich in sinigrin suppressed (100%) the mycelial growth of P. cinnamomi, while plants rich in aromatic or other aliphatic glucosinolates had little or no suppressive effect. Simulating soil amendment in field conditions, the effects on natural soil artificially infested with P. cinnamomi chlamydospores were examined with Brassica juncea, Eruca vesicaria and Lepidium sativum, three species with different glucosinolate profiles. Only B. juncea decreased the viability of chlamydospores significantly in comparison with untreated soil only 1 day after biofumigation, whereas E. vesicaria needed 8 days to reach significance and L. sativum had no effect at all. Despite the decreases in soil inoculum, biofumigation with B. juncea did not prevent the root infections in a highly susceptible host (Lupinus luteus). However, biofumigation with plants rich in sinigrin, such as B. juncea, decreased P. cinnamomi soil inoculum under the experimental minimum threshold for oak disease expression. Although biofumigation should be considered as an effective measure to be incorporated in integrated control of the oak disease, biofumigation by itself would not be effective enough for the substantial suppression of P. cinnamomi inoculum.  相似文献   

20.
Phytophthora austrocedri is a pathogen of Austrocedrus chilensis causing “Mal del Ciprés” (cypress sickness) in Patagonia and killing Juniperus communis in Britain, along with other species in the Cupressaceae. The evident association of the pathogen with members of the Cupressaceae makes it necessary to study the susceptibility of other species related to A. chilensis to prevent the emergence of new diseases. The present study tested the pathogenicity of P. austrocedri to three native and endemic conifers in South America: Fitzroya cupressoides, Pilgerodendron uviferum and Araucaria araucana. The results showed that F. cupressoides and P. uviferum were highly susceptible to P. austrocedri. Since these are endangered tree species, the outcome of this study is crucial for governmental agencies, policymakers and stakeholders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号