首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
影响柑橘变温压差膨化干燥的因素研究   总被引:9,自引:2,他引:7  
毕金峰 《核农学报》2007,21(5):483-487
采用变温压差膨化干燥技术,探讨预干燥后水分含量、膨化温度、抽空温度、抽空时间、停滞时间和压力差等因素对柑橘膨化产品的水分含量、脆度、膨化度和色泽的影响。研究结果表明:原料预干燥后含水量、膨化温度和抽空时间对膨化柑橘含水量、脆度、膨化度和色泽有显著影响;预干燥后,含水量在35.37%左右,膨化温度为90℃,抽空温度为80℃,抽空时间为2h较为合适;停滞时间、压力差在一定范围内对柑橘膨化产品质量的影响不太,试验确定停滞时间和压力差分别为5min和0.1MPa。  相似文献   

2.
为提高黑毛豆仁膨化产品的品质,采用微波联合气流膨化干燥工艺。考察不同单位质量微波功率对黑毛豆仁干燥特性的影响,探讨联合干燥过程转换点含水率、膨化温度、停滞时间、压力差、抽空干燥时间对黑毛豆仁膨化产品的含水率、硬度、脆度和色泽的影响。结果表明:当单位质量微波功率为5W/g时,黑毛豆仁的干燥速率较快,干燥时间较短;联合干燥转换点含水率、膨化温度、抽空干燥时间对膨化产品的品质影响显著,而膨化压力差、停滞时间对膨化产品品质影响较小。确定黑毛豆仁微波联合气流膨化干燥适宜的工艺参数:单位质量微波功率5W/g,转换点含水率31%,压力差0.124MPa,膨化温度100℃,停滞时间10min,抽空干燥时间90min。研究结果可为黑毛豆仁干制品的产业化生产提供技术参考。  相似文献   

3.
均匀设计法优化冬瓜膨化工艺   总被引:3,自引:0,他引:3  
为对冬瓜脆条真空微波联合气流膨化工艺进行优化,采用均匀设计法,考察预干燥后含水率、微波功率和时间、膨化温度、抽空干燥温度和时间6因素5水平对膨化率、脆度、亮度L*和终含水率的影响,并通过逐步回归法对数据进行分析。结果表明,最佳膨化工艺参数组合为:预干燥后含水率47.4%,微波功率8.5W·g-1,微波加热时间为135s,膨化温度为106℃,抽空干燥温度为72℃,抽空干燥时间为85min。研究结果可为真空微波联合气流膨化冬瓜脆条的工业化生产提供参考。  相似文献   

4.
哈密瓜变温压差膨化干燥工艺优化研究   总被引:19,自引:2,他引:19  
为了对哈密瓜变温压差膨化干燥工艺进行优化,采用三因子二次回归正交旋转组合设计,分析预干燥后含水率、膨化温度和抽空时间3个变量对产品含水率、脆度、膨化度和色泽的影响,在此基础上由试验数据推导出描述4个指标的二次回归模型,并对变量进行响应面分析,得出优化膨化干燥工艺条件为:预干燥后原料含水率为30%,膨化温度为88~95℃,抽空时间为1.7~2.2 h.  相似文献   

5.
气流膨化甘薯片的工艺优化   总被引:3,自引:0,他引:3  
:为了对甘薯片气流膨化工艺进行优化,在单因素试验的基础上,采用三因子二次正交旋转组合设计,分析了膨化温度、抽空干燥温度和抽空干燥时间对产品的硬度、脆度和色泽的影响,并对变量进行了响应曲面分析。研究结果表明,膨化温度、抽空干燥温度和抽空干燥时间对甘薯片的品质指标有显著影响;得出的较佳气流膨化甘薯片工艺参数组合为:膨化温度91℃,抽空干燥温度75℃,抽空干燥时间47 min。研究结果可以为气流膨化甘薯片的工业化生产提供参考。  相似文献   

6.
菠萝变温压差膨化干燥工艺优化   总被引:4,自引:2,他引:4  
为了确定最佳的菠萝变温压差膨化干燥工艺范围,在单因素的基础上,采用三因子二次回归正交旋转组合设计,对菠萝变温压差膨化干燥工艺进行了优化,分析了膨化温度(X1)、膨化压力(X2)和抽空时间(X3)这3个因素对产品含水率(Y1)、色泽(Y2)、硬度(Y3)和脆度(Y4)这4个指标的影响及其交互作用。根据试验数据推论出描述这4个指标的二次回归模型,并进行了响应面分析,得出了菠萝优化膨化工艺范围。结果表明:膨化温度、膨化压力和抽空时间对产品的含水率、色泽、硬度和脆度都影响显著,三因子间的交互作用也显著地影响产品质量。最佳菠萝变温压差膨化干燥工艺范围是:膨化温度115~123℃;膨化压力0.04~0.08 MPa;抽空时间为2~3 h。  相似文献   

7.
利用非稳态菲克第二定律计算苹果片变温压差膨化干燥过程中水分扩散系数,讨论膨化温度、抽空温度和切片厚度对苹果片干燥过程中水分扩散的影响.采用Page、Henderson&Pabis和Logarithmic3种数学模型对苹果膨化干燥过程中水分的扩散进行了模型拟合,由模型统计参数平均偏差(MBE)、相对平均标准差(RMSE)、卡方(X2)、模型拟合效率(EF)值及决定系数r2评价模型优劣.结果表明:Logarithmic模型能够很好地描述苹果片变温压差膨化干燥中水分扩散的过程(r2≥0.97).试验设定工艺参数下,有效水分扩散系数De.在98.034×10-12 ~274.165×10-12m2 ·s-1之间,并且有效水分扩散系数随膨化温度、抽空温度的升高而升高;随切片厚度的增加而降低.  相似文献   

8.
莲藕片真空微波联合气流膨化干燥工艺   总被引:1,自引:0,他引:1  
为优化莲藕片真空微波-气流膨化联合干燥工艺,本试验在单因素试验的基础上,采用三因子二次正交旋转组合设计,探讨了单位质量微波功率、转换点含水率和膨化温度对产品的亮度、硬度、脆度和水分含量的影响,并对变量进行了响应曲面分析.结果表明:单位质量微波功率、转换点含水率和膨化温度对莲藕脆片的品质指标有显著影响.真空微波联合气流膨化干燥莲藕片工艺的最优参数组合为:单位质量微波功率12.48W·g-1,转换点含水率48.73%,膨化温度86.56℃.优化莲藕片的生产工艺可为莲藕片工业化生产提供参考.  相似文献   

9.
高温短时气流膨化薏米工艺优化   总被引:1,自引:1,他引:0  
为了对薏米高温短时气流膨化工艺进行优化,采用响应曲面法研究了预糊化时间、膨化温度、膨化时间和含水率4个因素对薏米膨化率和黄蓝值的影响,并对膨化前后薏米的淀粉和蛋白质体外消化性以及细胞结构进行了分析。结果表明,影响薏米膨化率因素的强弱顺序依次为膨化时间>含水率>膨化温度>预糊化时间,高温短时气流膨化薏米的最优条件为预糊化时间30min、膨化温度250℃、膨化时间20.0s和含水率6%。膨化后薏米淀粉和蛋白质体外消化率均比膨化前显著提高(P<0.05)。膨化后薏米细胞内部呈蜂窝状结构,形成很多较大的空洞。该文提供了一种缩短薏米蒸煮时间和提高营养物质消化吸收率的技术,满足薏米工业化生产的需求。  相似文献   

10.
红枣片冷冻-红外分段组合干燥工艺优化   总被引:4,自引:4,他引:0  
为开发一种提质增效的红枣片干燥工艺,比较了单一干燥(冷冻干燥、红外干燥、热风干燥和微波真空干燥)对红枣片干燥特性及品质的影响,选用冷冻与红外干燥分段组合的方法干制红枣片,以干燥时间和维生素C保留率为评价指标,采用三元二次通用旋转组合设计优化红枣片冷冻-红外组合干燥工艺参数,并与红外干燥(64℃,6.75 W/g)、冷冻干燥(-40℃,12 Pa,64℃)产品的干燥时间和品质进行对比分析。结果表明:1)冷冻与热风干燥的干燥时间最长,微波真空干燥最短,红外干燥次之;2)冷冻干燥产品品质较好,但酥脆性一般,红外干燥产品在色泽、质构(硬/脆度)、微观结构方面均好于热风和微波真空干燥产品,且酥脆性较好;3)转换含水率、红外温度和切片厚度对红枣片冷冻-红外组合干燥过程有显著影响(P<0.05),对干燥时间影响主次顺序依次为转换含水率、红外温度、切片厚度,对维生素C保留率影响主次顺序依次为红外温度、转换含水率、切片厚度;4)采用响应曲面法优化与试验验证确定出较佳工艺参数为:转换含水率34 %、红外温度64℃、切片厚度5 mm,此时,干燥时间3.62 h,维生素C保留率68.92%;5)冷冻-红外组合干燥产品品质优于红外干燥,干燥时间比冷冻干燥缩短57.6%,维生素C保留率比红外干燥提高了34.6%。结果表明冷冻-红外组合干燥缩短了干燥时间同时保证了干燥品质,可为红枣片干制加工提供一种新的组合干燥技术和理论依据。  相似文献   

11.
果蔬变温压差膨化干燥技术研究进展   总被引:15,自引:3,他引:12  
果蔬变温压差膨化干燥是一种新型的果蔬干燥技术,它结合了热风干燥和真空冷冻干燥的优点.变温压差膨化干燥技术生产的果蔬产品绿色天然、营养丰富、品质优良,应用前景广阔.该文综述了果蔬变温压差膨化干燥设备的发展历程以及国、内外生产工艺和干燥机理的研究进展,分析了果蔬变温压差膨化干燥技术的特点和难点,并论述了该技术发展趋势和应用前景,为果蔬变温压差膨化干燥的深入研究提供参考.  相似文献   

12.
为探索预干燥处理对不同果蔬脆片结构及质地特性的影响,该研究采用真空冷冻干燥作为预干燥,并选取了3个水分转换点(60%、45%、30%),对预干燥过程中6种典型果蔬(苹果,梨,桃,山药,马铃薯,青萝卜)水分状态、细胞结构、收缩率、孔隙度、应力-松弛特性与质地特性进行测定与分析。结果表明,随着预干燥的进行,水分含量逐渐降低,自由水逐渐散失,以不易流动水为主,收缩率逐渐减小,孔隙度逐渐增大,硬度、咀嚼性、弹性模量逐渐增加;水分转换点为60% 时不同果蔬脆片具有较高的硬脆度,其中马铃薯与山药脆片硬度较高,桃与梨的脆片脆度较高;水分转换点为30%时,6种果蔬的孔隙度最高,且青萝卜的孔隙度显著高于其他果蔬(P < 0.05);在干燥后期,果蔬样品骨架基本形成,且收缩率较低,致使内部孔隙度变大;由相关性分析可知真空冷冻预干燥过程中水分转换点、孔隙度与果蔬脆片质地特性极显著相关(P < 0.05),研究结果可为预干燥对果蔬脆片质地影响提供参考。  相似文献   

13.
为了研究苹果片水分散失特性及品质变化规律,该文采用脉动压差闪蒸技术对苹果片进行干燥处理,结合低场核磁共振技术、重量法、物性分析等技术,分析苹果片水分散失特性和品质变化。闪蒸是脉动压差闪蒸干燥的一个中间阶段,也是一个至关重要的环节,因此该文着重研究闪蒸温度和闪蒸次数对瞬间脉动压差作用引起的水分散失、水分状态变化及苹果脆片品质的变化。试验结果显示:闪蒸温度对苹果片水分散失和品质都有影响,温度过低产品酥脆度不佳,温度过高引起脆片品质下降,由此得到适宜的闪蒸温度为95℃;多次脉动闪蒸对水分散失和质构的形成有促进作用,由于闪蒸瞬间温度和压力的突然降低,水分瞬间汽化为蒸汽,苹果片含水率降低,可以缩短干燥时间,提高脆片品质;闪蒸量随脉动次数的增加呈现出先上升后下降的趋势,这与苹果片内水分状态变化有关,初期以自由水为主而容易散失,后期以不易流动水和结合水为主,水分逐渐从高自由度向低自由度转变,导致水分散失速度减慢,水分闪蒸量减少;此外,核磁共振信号幅值的降低说明闪蒸作用可以促进水分散失;闪蒸促进水分散失的同时,引起内部结构膨胀,减少脆片干燥皱缩现象;闪蒸次数对苹果脆片品质也有一定影响,次数过多引起色泽变暗、膨化度降低、口感变差,综合各方面品质特性变化,得到闪蒸5次较为适宜。该试验结果可以为闪蒸作用对水分散失特性及品质影响研究提供理论基础。  相似文献   

14.
膨化温度对冬枣变温压差膨化干燥特性的影响   总被引:2,自引:1,他引:2  
为探索冬枣变温压差膨化干燥过程中水分的变化规律,研究了不同膨化温度对冬枣变温压差膨化干燥特性的影响,并建立了变温压差膨化干燥动力学模型.试验结果表明:变温压差膨化干燥过程分为快速干燥、恒速干燥和减速干燥3个阶段,含水率在50%左右时进入恒速干燥阶段,40%后开始减速干燥过程,干燥过程大部分处于降速阶段;不同膨化温度下的...  相似文献   

15.
利用LF-NMR探讨冻融处理影响甘薯膨化产品品质的机理   总被引:6,自引:2,他引:4  
为探究冻融处理对甘薯变温压差膨化干燥产品品质影响的机理,应用低场核磁共振技术(low-field nuclear magnetic resonance,LF-NMR)研究了冻融后甘薯中水分存在形式和各组分含量,比较了冻融次数对甘薯膨化干燥产品硬度、色泽和多孔性等品质指标的影响。结果表明:冻融后甘薯LF-NMR自旋-自旋弛豫时间T2谱中出现4个水分峰,其横向弛豫时间分别为T21(0.25~0.55 ms)、T22(1~2.5 ms)、T23(5~12 ms)、T24(40~200 ms)。随着冻融次数增加,自由水含量(mT24)先增加后减少,结合最紧密的水含量(mT21)先减少后增加;干燥产品多孔性和复水性逐渐增大,ΔE逐渐变小,L*和硬度先减小后有稍许增大。相关性分析表明,多孔性与T24、mT23呈现显著正相关(P<0.05),相关系数分别为0.995、0.989;mT22与ΔE的相关系数为0.984。该研究为阐明冻融处理对果蔬变温压差膨化干燥品质变化机理分析提供了理论依据。  相似文献   

16.
李大婧  卓成龙  江宁  刘春泉 《核农学报》2010,24(6):1219-1225
使用固相微萃取(HS/SPME)-气质联用(GC/MS)技术对苏99-8毛豆仁鲜样和热风干燥毛豆仁挥发性成分进行分析,同时对2种干燥产品的感官品质、营养成分含量和质构特性进行比较。结果表明,在毛豆仁鲜样、热风干燥和热风联合压差膨化干燥制备的毛豆仁产品中分别检测出32、31、35种风味成分。鲜样中(Z)-3-己烯醇、正己醛、(E)-2-己烯醛、1-辛烯-3酮和1-戊烯-3酮对其风味相对贡献较大。热风联合压差膨化干燥后毛豆仁醛类化合物明显增多,出现了杂环类、酯类、酸类及含硫化合物,2-庚烯醛、正己醛、正戊醛、1-辛烯-3-醇、2-辛烯醇、1-辛烯-3酮、乙酸异丙烯酯、2,3,5-三甲基吡嗪和2,6-二甲基吡嗪、二甲基亚砜对热风联合压差膨化干燥后毛豆仁风味贡献较大,使毛豆具有较浓的豆类清香味和浓厚的焙烤香气,造就了热风联合压差膨化干燥毛豆仁脆粒的独特风味。热风联合压差膨化干燥毛豆仁的感官品质和质构特性明显优于热风干燥毛豆仁。  相似文献   

17.
微波联合热风干制苏渝303甘薯干工艺研究   总被引:5,自引:1,他引:4  
刘春泉  江宁  李大婧  金邦荃 《核农学报》2009,23(6):1008-1013
为了获得苏渝303甘薯干的最佳干制工艺,进行了4因子(前期干燥方式、后期干燥方式、转换水分和缓苏时间)4水平正交试验。分析了各参数对3指标(品质、脱水速率和单位能耗)的显著水平及影响规律,并通过功效系数法进行综合评分,从而提出较佳工艺参数组合:选用前期8.33w/g微波干燥,待物料干燥至水分含量为40%时转换为50℃的热风干燥,转换时缓苏1h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号