首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The growing necessity to develop more productive agriculture has encouraged the expansion of new irrigated lands. However, water use in agriculture may affect the natural regimes of water systems. This study aims to analyze, for the first time, water use and its dynamics during the creation of a newly irrigated land. Water use was studied through the development of water balances and subsequent application of quality indices for irrigation in two unirrigated years (2004–2005) and three years of gradual implementation of irrigation (2006, 2007 and 2008) in the Lerma basin (752 ha, Spain). Increases in evapotranspiration, drainage and water content in the aquifer were verified during the gradual transformation into irrigated land. Water balances closed adequately, giving consistency to the results and enabling the application of quality indices for irrigation. Irrigation quality analysis showed a use of available water resources equal to 84%. However, the estimated irrigation efficiency presented lower values, mainly due to irrigation drainage (15%) and combined losses by both evaporation and wind drift of sprinkler irrigation systems (13%). The results indicate that the use of water in the Lerma basin is at the same management level of other modern irrigation systems in the Ebro basin, although there is still margin for improvement in irrigation management, such as reducing the irrigation drainage fraction and the evaporation and wind drift losses of sprinkler irrigation systems.  相似文献   

2.
Uniformity of distribution in irrigation systems plays an important role in the optimum use of irrigation water, with direct repercussions on water-use efficiency and production. To evaluate the effects of the wind on sprinkler water uniformity, it is necessary to measure infield water distribution under different wind conditions and then calculate the parameters that define water distribution. This paper perfects the SIRIAS simulation model for sprinkler systems, which can be used to design new irrigation installations or to improve existing ones. Using ballistic theory to simulate the trajectory of drops discharged by the sprinkler, the model obtains wind-distorted water distribution, with a new formulation for the air drag coefficient. It takes into account three options to distribute the evaporation and drift losses in the irrigation process. SIRIAS software has been programmed using Delphi language for Windows 95, 98 and NT.  相似文献   

3.
Quantitative determinations of evaporation and drift losses from sprinkler systems were carried out under different operating conditions.Evaporation losses determined by an electrical-conductivity method ranged from 1.5 to 16.8% of the total sprinkled volume. Wind velocity and vapor pressure deficit were the most significant factors affecting the evaporation losses. Exponential relationships between the evaporation losses and both wind velocity and vapor pressure deficit have been found. For the operating pressures used in this study the least effect on evaporation was found.Drift losses measured by the magnesium-oxide method varied from 1.5 to 15.1%. Drift losses increased with the second power of the wind velocity, and decreased with increasing distance in the downwind direction.Combined losses from a sprinkler system for a given set of operating conditions have been estimated by using the results obtained from the experiments. Combined losses ranged from 1.7 to 30.7% of the applied water.  相似文献   

4.
Sprinkler irrigation efficiency declines when applied water intercepted by the crop foliage, or gross interception (Igross), as well as airborne droplets and ponded water at the soil surface evaporate before use by the crop. However, evaporation of applied water can also supply some of the atmospheric demands usually met by plant transpiration. Any suppression of crop transpiration from the irrigated area as compared to a non-irrigated area can be subtracted from Igross irrigation application losses for a reduced, or net, interception (Inet) loss. This study was conducted to determine the extent in which transpiration suppression due to microclimatic modification resulting from evaporation of plant-intercepted water and/or of applied water can reduce total sprinkler irrigation application losses of impact sprinkler and low energy precision application (LEPA) irrigation systems. Fully irrigated corn (Zea Mays L.) was grown on 0.75 m wide east-west rows in 1990 at Bushland, TX in two contiguous 5-ha fields, each containing a weighing lysimeter and micrometeorological instrumentation. Transpiration (Tr) was measured using heat balance sap flow gauges. During and following an impact sprinkler irrigation, within-canopy vapor pressure deficit and canopy temperature declined sharply due to canopyintercepted water and microclimatic modification from evaporation. For an average day time impact irrigation application of 21 mm, estimated average Igross loss was 10.7%, but the resulting suppression of measured Tr by 50% or more during the irrigation reduced Igross loss by 3.9%. On days of high solar radiation, continued transpiration suppression following the irrigation reduced Igross loss an additional 1.2%. Further 4–6% reductions in Igross losses were predicted when aerodynamic and canopy resistances were considered. Irrigation water applied only at the soil surface by LEPA irrigation had little effect on the microclimate within the canopy and consequently on Tr or ET, or irrigation application efficiency.  相似文献   

5.
Wind drift and evaporation losses (WDEL) represent a relevant water sink in sprinkler irrigation, particularly in areas with strong winds and high evaporative demand. The objectives of this paper include: (1) characterize WDEL under day and night operation conditions for solid-set and moving lateral configurations; (2) propose adequate predictive equations; and (3) prospect the effect of sprinkler irrigation on the meteorological variables and on the estimates of reference evapotranspiration. A total of 89 catch can irrigation evaluations were performed in both irrigation systems and under day and night conditions. Different predictive equations of WDEL were proposed for combinations of the two irrigation systems and the two operation times. The equations were selected based on their capability to explain and predict WDEL. Most equations use wind speed alone as an independent variable, although some use relative humidity or combinations of both variables plus air temperature. In the semi-arid meteorological conditions of Zaragoza (Spain), the average WDEL for the solid-set were 15.4 and 8.5% during day and night irrigations, respectively. For the experimental moving lateral, losses amounted to 9.8% during the day and 5.0% during the night. The effect of sprinkler irrigation on the meteorological variables was moderate, with small increases in relative humidity (3.9%) and decreases in air temperature (0.5 °C) during the irrigation event and a few minutes afterwards. Consequently, reference evapotranspiration, estimated by the Penman-Monteith method, decreased during the irrigation event by 0.023 mm h−1 on the average. This decrease represents 2.1% of WDEL, suggesting that the WDEL do not significantly contribute to satisfy crop water requirements, and therefore constitute a consumptive water loss.  相似文献   

6.
ZY-2摇臂式喷头组合喷灌技术参数田间试验研究   总被引:2,自引:1,他引:1  
采用承雨筒测量法,对目前市场上常用的ZY-2摇臂式喷头采用18 m×18 m布置方式在不同气象条件下的组合喷灌主要技术参数开展田间试验研究.结果表明,组合喷灌均匀系数、喷洒水利用系数均在0.8以上,蒸发漂移损失的测试值为0.8%~14.28%.主要集中在4%~10%.构建了组合喷灌主要技术参数与主要气象因素、工作压力的...  相似文献   

7.
Gross sprinkler evaporation losses (SELg) can be large and decrease irrigation application efficiency. However, it is not universally established how much of the SELg contributes to decrease the crop evapotranspiration during the sprinkler irrigation and how much are the net sprinkler losses (SELn). The components of SEL were the wind drift and evaporation losses (WDEL) and the water intercepted by the crop (IL). The gross WDEL (WDELg) and evapotranspiration (ET) were measured simultaneously in two alfalfa (Medicago sativa L.) plots, one being irrigated (moist, MT) and the other one not being irrigated (dry, DT). Catch can measurements, mass gains, and losses in the lysimeters and micrometeorological measurements were performed to establish net WDEL (WDELn) during the irrigation and net IL (ILn) after the irrigation as the difference between ETMT and ETDT. Also, equations to estimate ILn and net sprinkler evaporation losses (SELn) were developed. ILn was strongly related to vapor pressure deficit (VPD). SELn were 8.3 % of the total applied water. During daytime irrigations, SELn was 9.8 % of the irrigation water and slightly less than WDELg (10.9 %). During nighttime irrigations, SELn were slightly greater than WDELg (5.4 and 3.7 %, respectively). SELn was mainly a function of wind speed.  相似文献   

8.
A field experiment was performed to study the effect of the space and time variability of water application on maize (Zea mays) yield when irrigated by a solid set sprinkler system. A solid set sprinkler irrigation layout, typical of the new irrigation developments in the Ebro basin of Spain, was considered. Analyses were performed (1) to study the variability of the water application depth in each irrigation event and in the seasonal irrigation and (2) to relate the spatial variability in crop yield to the variability of the applied irrigation and to the soil physical properties. The results of this research showed that a significant part of the variability in the Christiansen coefficient of uniformity (CU), and wind drift and evaporation losses were explained by the wind speed alone. Seasonal irrigation uniformity (CU of 88%) was higher than the average uniformity of the individual irrigation events (CU of 80%). The uniformity of soil water recharge was lower than the irrigation uniformity, and the relationship between both variables was statistically significant. Results indicated that grain yield variability was partly dictated by the water deficit resulting from the non-uniformity of water distribution during the crop season. The spatial variability of irrigation water depth when the wind speed was higher than 2 m s–1 was correlated with the spatial variability of grain yield, indicating that a proper selection of the wind conditions is required in order to attain high yield in sprinkler-irrigated maize.  相似文献   

9.
This study analyzes the effects of irrigation modernization on water conservation, using the Riegos del Alto Aragón (RAA) irrigation project (NE Spain, 123354 ha) as a case study. A conceptual approach, based on water accounting and water productivity, has been used. Traditional surface irrigation systems and modern sprinkler systems currently occupy 73% and 27% of the irrigated area, respectively. Virtually all the irrigated area is devoted to field crops. Nowadays, farmers are investing on irrigation modernization by switching from surface to sprinkler irrigation because of the lack of labour and the reduction of net incomes as a consequence of reduction in European subsidies, among other factors. At the RAA project, modern sprinkler systems present higher crop yields and more intense cropping patterns than traditional surface irrigation systems. Crop evapotranspiration and non-beneficial evapotranspiration (mainly wind drift and evaporation loses, WDEL) per unit area are higher in sprinkler irrigated than in surface irrigated areas. Our results indicate that irrigation modernization will increase water depletion and water use. Farmers will achieve higher productivity and better working conditions. Likewise, the expected decreases in RAA irrigation return flows will lead to improvements in the quality of the receiving water bodies. However, water productivity computed over water depletion will not vary with irrigation modernization due to the typical linear relationship between yield and evapotranspiration and to the effect of WDEL on the regional water balance. Future variations in crop and energy prices might change the conclusions on economic productivity.  相似文献   

10.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

11.
20PY2掺气喷头是以20PY2摇臂喷头结构为基础,引入气液两相流理论得到的一种喷头.以20PY2掺气喷头为研究对象,研究其低压下的喷灌效果,并对比摇臂喷头的喷灌效果.试验评价指标:平均喷灌强度、蒸发漂移量、喷灌均匀系数及分布均匀系数;变量:工作压力和组合间距.试验结果表明:与摇臂喷头相比,掺气喷头的射程变化不大,但掺气喷头的平均喷灌强度随工作压力递增,随着组合间距递减;低压下,掺气喷头在风速为1 m/s时的蒸发漂移量约为5%,其组合喷灌的最佳工作压力和组合间距分别为300 kPa和1.1R.掺气喷头喷灌强度峰值与谷值的阶梯性较好,同等数量测点的喷灌强度峰值区间和谷值区间平均值趋向于平均喷灌强度,峰值区间和谷值区间喷灌强度在灌溉总强度中的占比分别低于和高于摇臂喷头.因此,喷灌效果优于摇臂喷头.  相似文献   

12.
A study was carried out to determine the efficiencies of water use in irrigation in the Jordan Valley Project. The study aimed to evaluate, the overall or project efficiency (Ep) which includes: the irrigation system efficiency, being the combined conveyance and distribution efficiency (Es); and the field application efficiency (Ea). Evaluation of these efficiencies includes the comparison of open canals with surface irrigation versus pressurized pipes with sprinkler or drip irrigation systems. Data was collected from different sources to achieve the above mentioned purposes, beside the field experiments which were carried out specially for this study.It was found that the overall or project efficiency (Ep) for open surface canal with surface irrigation under citrus was 53%. While it was 42% under vegetables. Whereas Ep for pressurized pipe systems was 68%, and 70% for sprinkler and drip irrigation methods, respectively.The Es for an open canal, (King Abdullah Canal, KAC) was 65%. While it was 77% for pressurized pipe projects during 1989–1991. Concerning the Ea, it was found to be equal to 82% and 64%, for surface irrigation on citrus and vegetables, respectively. Whereas it was 88% for citrus under sprinkler, and 91% for vegetables under drip irrigation. These values for the field application efficiency are acceptable according to Finkle (1982). The low Es value for the canal is due, mainly, to high evaporation and seepage, unreported deliveries, and unavoidable measurement losses. Whereas, in pressurized pipe projects, it is due to the unreported deliveries, unavoidable measurement losses, and leakage.  相似文献   

13.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、喷头间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300 k Pa。  相似文献   

14.
Assessing whole-field uniformity of stationary sprinkler irrigation systems   总被引:2,自引:0,他引:2  
The procedure established in the literature for the evaluation of stationary sprinkler irrigation systems is limited in space and time since it is based on a sample of precipitation taken around one sprinkler during a given period of the whole irrigation event. This procedure also ignores what happens in the soil after water infiltrates. A model of the drop trajectory and of the water distribution pattern is formulated here for simulating precipitation from single sprinklers. The operating pressure determines sprinkler flow and maximum throw. Wind and evaporation distort the distribution patterns. The water distribution of individual sprinklers is overlapped to generate precipitation over the whole field and to calculate a coefficient of uniformity. Field effective uniformity is then calculated by averaging precipitation over the extension of plant roots or water redistribution within the soil profile. Application of the model has shown the impact of system management and design, field topography and wind on irrigation uniformity. Management factors such as lateral operation time or riser inclination may account for a large part of the field precipitation variations. A rough topography may also reduce uniformity significantly. Wind speed is important when it exceeds 1.8–2 m s–1. The allowable maximum pressure loss of 20% fixed as a design criterion seems an overly strict limit when other factors may overcome pressure loss as sources of non-uniformity. The sources of non-uniformity have different scales of variation. Large-scale sources, such as lateral operation time or pressure loss, are not dampened by the crop or soil. Sources of smaller-scale variation, such as wind or inclination of the sprinkler riser, are better compensated by the crop and soil. The application of this kind of model to the design and management of sprinkler irrigation systems is discussed. Received: 9 May 1997  相似文献   

15.
This study was conducted to investigate the effects of applied water and sprinkler irrigation uniformity on alfalfa (Medicago sativa L.) growth and hay yield in a semi-arid region. Field experiments were carried out in 2006 in Varamin, Iran, on three plots of 25 m × 30 m. Each plot was subdivided into 25 subplots of 5 m × 6 m. Different irrigation depths and sprinkler water uniformities were obtained by various scenarios of sprinkler nozzle pressure. In each plot, applied water was measured at 250 points (125 points above and 125 points below canopy) and the soil water content of 40 cm deep below soil surface was monitored at 25 points, each in the center of a subplot, throughout the irrigation season. The results showed that sprinkler water and soil water content uniformity varied between 66-78 and 88-91%, respectively. The findings revealed that soil water content uniformity was around 20% higher than sprinkler water uniformity. The irrigation uniformity below the canopy was estimated to be 2.5% greater than above the canopy, and canopy-intercepted water could account for 11-15% of the total seasonal applied water. Evaluation showed that alfalfa leaf area index relies more heavily on farm water application uniformity than hay yield and crop height. The experimental results illustrated that water distribution in sprinkler irrigation systems has a direct effect on alfalfa growth, hay yield and water productivity such that the applied water reduction and the increased sprinkler water uniformity led to an increased alfalfa water productivity of 2.41 kg m−3.  相似文献   

16.
Castilla-La Mancha in Central Spain is a semi-arid area of extremely high interannual and seasonal rainfall variability. Average annual rainfall for the catchment of the Upper Guadiana using data from 60 rain gauges for October 1956–September 1991 varied from a minimum of 326 mm in October 1982–October 1983 to a maximum of 642 mm in October 1968–September 1969. The mean annual rainfall for the period was 495 mm with a coefficient of variation for annual rainfall of 26.4%. In addition to this the spatial variability of rainfall is particularly high. For example total annual rainfall varied from 200 to 1200 mm for the hydrological year October 1968–September 1969 over a distance of only 50 km. The mean annual rainfall for all 60 stations for the period 1956–1991 was 460 mm with a coefficient for spatial variation of 15%. Dryland farming which relies on these uncertain precipitation inputs is a high risk activity [Tarjuelo, J.M., de Juan, J.A., Valiente, M., Garcia, P., 1996. Agric. Water Manage. 31, 145–163] and over recent decades intensive irrigation has increased dramatically in order that precipitation inputs can be supplemented as required thereby allowing more stable agricultural productivity. The paper uses a coupled hydrology and vegetation growth model – PATTERN [Mulligan, M., 1996. Modelling hydrology and vegetation change in a degraded semi-arid environment. PhD. Thesis, University of London] to explore the relationship between irrigation and productivity for different soils typical of the Upper Guadiana catchment. Analysis of the model results shows that irrigation efficiency is highly sensitive to both soil texture and irrigation volume. Optimally efficient irrigation in terms of water losses occurs at the lowest volumes of applications. Fine grained soils are better suited to irrigation than coarse grained soils as losses to recharge are minimised. Coarse grained soils have large recharge losses and irrigation is also more sensitive to small changes in texture for coarser soils. Irrigation losses through recharge are also very sensitive to the interannual and spatial variability of rainfall.  相似文献   

17.
Assessing whole-field sprinkler irrigation application uniformity   总被引:1,自引:0,他引:1  
In order to assess whole-field sprinkler irrigation uniformity, an experiment was conducted to obtain water distribution profiles at 23 different pressures for each of five different sprinklers: Nelson R33, Nelson R33LP, Nelson R33 with road guard, Nelson R33LP with road guard, and Rainbird Mini Paw/LG-3. A mathematical model was developed to account for pressure variation throughout a fixed sprinkler system on a 10-ha field and to evaluate sprinkler irrigation uniformity for the whole field using interpolated water distribution profiles from the experimental data. The relationships between irrigation application uniformity and sprinkler pressure, sprinkler spacing, pressure variation, sprinkler type, and field topography were studied using the model. The results show that the coefficient of uniformity, CU, decreases rapidly when the pressure is below the low end of the manufacturer-recommended range; however, CU changes very little with pressure within the manufacturer-recommended range. The system application uniformity, CUsys, is usually less when pressure variations at different locations in a field are considered, and a simple previously published equation to predict CUsys is shown to closely approximate the CU from a more stringent calculation method. It was found that the impact of pressure variation (within the tested ranges) on application uniformity is less than that of the sprinkler spacing. Also, the effect of field topography on sprinkler application uniformity is relatively small for the cases tested herein.  相似文献   

18.
考虑水滴运动蒸发的喷灌水量分布模拟   总被引:3,自引:0,他引:3  
提出了有风条件下喷头水滴运动与喷灌水量分布模拟方法,并利用Visual Basic 6.0开发了喷灌水量分布模拟软件.该软件在已知单喷头的径向水量分布数据时,可以模拟出不同风速、风向、空气温湿度等环境条件下单喷头或多喷头组合的喷灌水量分布,计算出喷灌系统的组合喷灌强度、喷灌均匀系数和蒸发损失率.以9708A型喷头为例,分别对工作压力为0.20、0.25和0.30 MPa下单喷头径向水量分布以及喷灌系统组合间距为14 m x 14 m和14 m×12 m时的喷灌水量分布进行了模拟,并与实测值进行了对比,结果表明:模拟的单喷头径向水量分布与实测值总体一致,由模拟水量分布推算的喷头流量与实测值的相对误差为0.83% ~8.01%;喷灌均匀系数模拟值与实测值的相对误差为0.69%~6.36%,蒸发损失率模拟值为0.51% ~ 1.75%,小于实测的水量损失率.模拟了不同组合间距下的喷灌水量分布,得到的喷灌均匀系数模拟值与其他软件比较,相对误差在0.11% ~2.44%之间.  相似文献   

19.
We assess the economics of investing in suspended shade-cloth covers (SSCCs) in agricultural water reservoirs (AWRs) to reduce evaporation losses and save water for irrigation in arid and semi-arid areas. In particular, we examine the use of SSCCs in the Segura River Basin (southeastern Spain). The decision to install a cover depends on the potential evaporation losses, reservoir characteristics, cover effectiveness, the value of water, filtration requirements, water salinity, government subsidies and the installation, operation and maintenance costs. The economic viability of the investment increases with the value of the saved water, i.e., with water scarcity, and is greater when water quality is poor. Hence SSCCs can be helpful in arid and semi-arid regions facing water shortages and water quality problems. The farm-level decision to install a cover depends largely on the cost of purchasing water, when water is generally available, and the profit from increased crop production or enlarged farmlands, when water is scarce.  相似文献   

20.
Summary The energy requirements for manufacturing irrigation equipment were evaluated from a survey of a number of factories and workshops in Israel.Based on the results obtained and the life span of the components, the annual amortization of energy by high-pressure (overhead sprinklers), medium-pressure (undertree sprinklers and sprayers) and low-pressure (drip lines) irrigation systems was calculated for citrus orchards and cotton crops as irrigated in Israel. For citrus orchards a low-pressure sprayer system amortized 1.5 GJ ha–1 y–1 more energy than a medium-pressure undertree sprinkler system, and 2.7 GJ ha–1 y–1 more than a high-pressure, overhead sprinkler system. For irrigating a cotton crop, the low-pressure drip system used 6.8 GJ ha–1 y–1 more embodied energy than the movable, high-pressure overhead sprinkler system.The annual energy invested in irrigation water conveyance through the National Water Carrier, at the current hydraulic pressure of 500 kPa at the farm gate, varies for a cotton crop from 20 to 45 GJ ha–1 y–1 in the northern region and from 70 to 215 GJ ha–1 y–1 in the southern region of Israel, when irrigated with 4,050 m3 ha–1. For a citrus orchard this energy input varies from 60 to 75 GJ ha–1 y–1 in the central region and from 120 to 375 GJ ha–1 y–1 in the southern regions, when irrigated with 7,200 m3 ha–1. For obtaining the same yield in the south as in the north, the energy input for water conveyance has to be increased by 12% in the case of a cotton crop and by 7% in the case of a citrus orchard. Thus, in the north the annual energy amortization of a dripline irrigation system amounts to one third of that expended on water conveyance but in the south amounts to one-eighteenth or less, indicating the large regional dependency of energy inputs for irrigation.Calculations show that the reduction in energy requirement for water conveyance needed by irrigation systems operating at lower pressures compensates for their higher energy losses in system amortization. For example, in citrus irrigation the substitution of medium-pressure undertree sprinkler systems for high-pressure overhead sprinkler systems was calculated to save 8% of the total energy expenditure for water conveyance to the farm gate. This would amount to a saving of 7 GJ ha–1 y–1 for citrus in the central region and of 8 GJ ha–1 y–1 in the south. For cotton the substitution of low pressure dripline systems for high-pressure overhead sprinkler systems could save 16% of the total energy expenditure for pressurized water conveyance. This would amount to a saving of 8 GJ ha–1 y–1 in the northern region increasing to 10 GJ ha–1 y–1 in the south, taking into account a higher irrigation water requirement.Contribution from the Agricultural Research Organization, Bet Dagan, Israel. No. 1589-E, 1985 series  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号