首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响   总被引:23,自引:0,他引:23  
在自然降水条件下,通过2年大田试验研究了施氮量对晋南旱地冬小麦光合特性、产量、氮素利用效率以及0~200 cm土层NO3-N残留的影响。结果表明,在0~270 kg hm-2施氮量范围内,随施氮量的增加,旗叶的净光合速率和叶绿素含量增加,气孔导度增大,胞间二氧化碳浓度降低,旗叶蒸腾速率显著提高; 但施氮量超过180 kg hm-2时,除蒸腾速率外其他光合指标均无显著变化。N180处理的氮素当季回收率及氮素农学效率均最高,且显著高于N90处理。生物产量以N270处理最高,且与其他处理差异显著; 但施氮量超过180 kg hm-2时,氮素营养对籽粒产量不再有显著贡献。从产量构成因素来看,提高穗数和穗粒数是增加当地旱作小麦籽粒产量的关键。施氮量90~270 kg hm-2会造成土壤NO3-N的残留,残留量占施氮量的35%左右,其中20~40 cm和40~60 cm土层出现NO3-N积累峰值,NO3-N残留会导致氮素淋失风险增加及产量对氮肥反应不明显。综合考虑光合特性、产量、氮素利用率和NO3-N残留量,当地旱作冬小麦施氮量以180 kg hm-2左右为宜。  相似文献   

2.
灌溉方式和施氮量对棉花生长及氮素利用效率的影响   总被引:12,自引:2,他引:12  
 设置2年田间小区试验,探讨了不同灌溉方式及施氮量对棉花生物量、氮素吸收量、皮棉产量及氮素效率的影响。结果表明,与漫灌相比滴灌显著增加了棉花生物量、氮素吸收量、皮棉产量以及氮肥利用率;滴灌棉花地上部各器官干物质积累量和氮素吸收量显著大于漫灌,而地下部干物质积累量和氮素吸收量显著低于漫灌,滴灌条件下较好的水分条件抑制了棉花根系生长而促进地上部生长。施用氮肥显著提高了棉花生物量、氮素吸收量。皮棉产量在施氮量为360 kg·hm-2时最大,过高氮肥投入无助于棉花产量提高。随着施氮量的增加,氮肥利用率、农学利用率、偏生产力均显著降低。灌溉方式与施氮量互作效应对棉花单株铃数及皮棉产量产生显著影响。  相似文献   

3.
以早稻株两优4024、金优402和晚稻H优159、金优207为试材分析了不同施氮水平对双季稻(早稻、晚稻)产量及群体特性的影响。施氮水平设置为120,150,180,225 kg/hm2(分别记作N1、N2、N3、N4),考察各处理的产量及其形成和分蘖动态、剑叶SPAD值、剑叶光合速率以及干物质积累等变化指标。结果表明:早稻株两优4024、金优402和晚稻H优159、金优207各处理产量均呈N1、N4、N2、N3依次增加的变化趋势;4个供试组合在分蘖盛期的总生物量呈N1、N2、N3、N4依次增大的变化趋势,在齐穗后13 d、成熟期4个组合的总生物量均呈N1、N4、N2、N3依次增大的变化趋势;相关分析发现,齐穗后13 d、成熟期的叶干质量、茎鞘干质量、穗干质量、根系干质量、地上部干质量、生物总量和剑叶光合速率与产量之间均呈显著或极显著正相关。试验结果说明,在120~180 kg/hm2,增加施氮量有利于双季稻取得高产;增加施氮量可促进分蘖盛期干物质的积累,但过量施氮会影响生长后期干物质的积累;齐穗后较大的生物总量和较高的剑叶光合速率有利于双季稻取得高产。  相似文献   

4.
为探讨科尔沁沙地生境下不同饲用燕麦品种叶片氮素代谢酶活性对施氮量的生理响应及差异,选择饲用燕麦品种牧王和甜燕1号,于燕麦的分蘖期、拔节期、抽穗期、开花期按照15%,40%,25%,20% 比例,对燕麦追施0(CK),100,200,300 kg/hm2纯氮,灌浆期取旗叶、倒二叶、倒三叶测定谷氨酸合成酶(GOGAT)、谷...  相似文献   

5.
施氮量对一年生黑麦草光合特性的影响   总被引:1,自引:0,他引:1  
为了探究不同施氮量对一年生黑麦草(Lolium multiflorum Lamk.)光合特性的影响。本研究以‘特高’宽叶型一年生黑麦草为供试材料,采用盆栽试验,设置了4个处理组,分别为:CK对照组(不施肥)、C1低氮处理组(施鸡粪0.38 kg/m^2,即氮100 kg/hm^2)、C2中氮处理组(施鸡粪0.76 kg/m^2,即氮200 kg/hm^2)、C3高氮处理组(施鸡粪1.34 kg/m^2,即氮350 kg/hm^2)。利用Li-6400便携式光合仪测定开花期一年生黑麦草叶片的主要光合参数和光合特性的变化。结果表明:200 kg/hm^2施氮水平的表观量子效率(apparent quantum yield,AQY)和光饱和点(light saturation point,LSP)最高(分别为12.80 μmol·m^-2·s^-1和1 774.47 μmol·m^-2·s^-1),光能利用区间最大。350 kg/hm^2施氮水平下气孔导度(stomatal conductance,Gs)以及蒸腾速率(transpiration rate,Tr)显著低于其它处理,水分利用力(water use efficiency,WUE)强,但光呼吸速率(photorespiratory rate,Pr)较高,不利于干物质积累。同时,0?200 kg/hm^2施氮范围内,随着光照强度和CO2浓度的增加,各处理的净光合速率(net photosynthetic rate,Pn)均随之增加,但350 kg/hm^2施氮水平下叶片净光合速率的增加反而低于200 kg/hm^2施氮水平。合理的施氮量对黑麦草的光响应和CO2浓度响应曲线有明显的调节作用。在本试验条件下,施氮量为200 kg/hm^2最佳。  相似文献   

6.
氮素对燕麦冠层结构及光合特性的影响   总被引:6,自引:1,他引:6  
为了研究氮素对燕麦坝莜1号的冠层结构、光合特性及产量的影响,用红外气体分析仪和冠层分析仪测定不同氮肥处理下群体的冠层结构和光合特性,同时分析了不同氮素水平下产量性状指标之间的差异性。结果表明:随着施氮量的增加,单株叶面积和叶绿素含量均显著增加,单株叶面积在整个生育期呈"M"型变化,叶绿素含量在抽穗期达到最大值。施氮量对叶面积指数和透光率的影响呈相反的变化趋势,随着施氮量的增加,叶面积指数变大,而透光率变小。随着施氮量的增加,燕麦坝莜1号旗叶净光合速率、气孔导度和蒸腾速率显著提高,胞间CO2浓度则降低。产量以N2处理(144.0 kg/hm2)最高。因此认为,合理的氮肥用量能显著改善燕麦群体的冠层结构,提高光合效率,是燕麦增产的重要农艺措施。  相似文献   

7.
8.
为了更好地对高粱进行氮素管理,采用盆栽试验研究了施氮量对高粱生长、籽粒产量及品质、氮素累积及转运利用的影响。选取肥力较低的土壤,设6个氮水平:0(N0)、0.05(N1)、0.1(N2)、0.2(N3)、0.4(N4)和0.6g/kg(N5)(风干土)。结果表明,N3处理干物质累积量、叶片SPAD值、籽粒产量、穗粒数及收获指数均显著高于N0和N5处理;N3处理籽粒淀粉含量低于N1处理,但淀粉产量最高;随施氮量的增加籽粒单宁含量降低,蛋白质含量增加,蛋白质总产量以N3和N4最高。随施氮量的增加叶鞘中NO3--N含量增加,N3处理挑旗期和穗花期叶鞘中NO3--N含量明显高于N0、N1和N2,但在灌浆期N0~N3处理间硝态氮含量没有显著差异;N3处理从茎叶向籽粒的转运率最高,达到76.76%。综上,适宜的施氮量有利于高粱生长及产量的提高,且在生长前期提高了叶鞘中硝态氮累积,能协调籽粒产量和功能成分的关系,获得较高的淀粉和蛋白总产量。  相似文献   

9.
硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响   总被引:15,自引:1,他引:14  
以Ca (NO3 ) 2 和NaCl按 5∶1的比例均匀混合设计 0 % ,0 1 % ,0 2 % ,0 3% ,0 5 % ,0 7%的盐浓度 6个处理 ,模拟宁夏不同日光温室的土壤含盐量 ,以番茄为试验对象 ,研究了不同浓度盐份对番茄苗期叶绿素含量 ,光合作用 ,荧光参数的影响。结果表明 ,在 0~ 0 5 %盐份处理对叶绿素含量有促进作用 ,在 0 1 %盐份处理对光合作用和光能转换率有刺激作用 ,但随着盐份浓度的加大 ,叶绿素含量降低 ,光合作用下降 ,光能转换率降低 ,植株生长发育受到了明显的抑制  相似文献   

10.
明确吉林省不同年代玉米品种产量、叶片氮含量与光合特性对不同氮素用量的响应趋势,对东北地区玉米高产品种选育具有重要的实践意义。本研究以20世纪70年代年以来吉林省大面积推广应用的6个代表性品种为研究对象(1970s:吉单101、中单2号; 1990s:四单19、吉单159; 2010s:先玉335和农华101),在大田条件下共设置4个氮素水平(0、125、250和375 kg hm–2),分析了氮素施用量对不同年代玉米品种产量、叶片氮含量及光合特征参数等的影响。结果表明,所有氮水平下玉米籽粒产量均随品种更替而提高,现代品种在较高氮水平下(≥250 kg hm–2)产量优势更明显,各处理产量的提高主要是单穗粒数和粒重同时增加的结果。当施氮量不高于250 kg hm–2时,各年代玉米品种穗位叶净光合速率(Pn)均随施氮量增加而提高,现代品种显著高于老品种,当施氮量为375kghm–2时Pn均显著降低,降低幅度表现为老品种高于现代品种。而吐丝至蜡熟期, P  相似文献   

11.
在田间研究了5 种施氮量N0 (0 kg/hm2)、N1 (90 kg/hm2)、N2 (180 kg/hm2)、N3 (270 kg/hm2)、N4(360 kg/hm2)处理对‘新冬18 号'旗叶光合特性、干物质积累、产量及氮素利用效率的影响。结果表明:拔节期增加施氮量,增加孕穗期旗叶的叶绿素和可溶性蛋白质含量、光合速率、叶面积指数、春季总光合势。孕穗期施氮肥延缓旗叶叶绿素和可溶性蛋白含量、光合速率、叶面积指数的衰减;孕穗后均以N3、N4的旗叶叶绿素和可溶性蛋白质含量、光合速率、叶面积指数、春季总光合势较高,干物质积累量和产量也以N3、N4较高。随施氮量的增加干物质积累量和产量增加,氮肥利用效率降低。在本试验条件下增加施氮量使旗叶叶绿素和可溶性蛋白含量、光合速率、叶面积指数增加及其功能期的延长是‘新冬18号’增产的主要原因。综合考虑施氮量在180~270 kg/hm2范围内,氮肥农学利用效率为6.9 kg/kg,可满足‘新冬18号’产量为8004.85 kg/hm2的需要。  相似文献   

12.
氮肥施用量对不同紫甘薯品种产量和氮素效率的影响   总被引:3,自引:0,他引:3  
选取紫甘薯品种浙紫1号、宁紫2号和紫菁2号,设置3个施氮处理,即0 (N0)、75 (N1)和150 (N2) kg hm–2纯氮,于2013-2014年2个生长季在青岛农业大学现代农业科技示范园进行大田试验,研究不同氮肥用量对块根产量、干物质累积速率、氮素累积量及氮素效率的影响。结果表明,施用氮肥不同程度地降低了浙紫1号和紫菁2号的薯块产量,其中,浙紫1号的N1、N2处理分别较N0处理降低12.64%和13.32%,紫菁2号分别降低3.94%和29.06%;宁紫2号N1处理产量略高于N0处理,两年分别较N0处理提高8.5%和3.4%,而N2处理块根产量显著低于N0处理。茎蔓生物量和氮素累积量随着施氮量的增加而增加,而收获指数、氮素收获指数和氮素利用效率逐渐降低。第1年N1、N2处理的茎蔓干物质累积量分别较N0处理提高2.7%~20%和12.3%~36.4%,第2年分别提高12.6%~51.9%和28.7%~85.5%。相关分析表明,块根产量与氮素效率各指标均呈显著或极显著正相关;而茎蔓生物量与收获指数、氮素收获指数及氮肥利用效率均呈极显著负相关(r = –0.615**, –0.704**, –0.663**)。肥沃土壤上施用氮肥会造成浙紫1号和紫菁2号的茎蔓旺长,光合产物向薯块转运比例降低,导致源库比例不协调,块根产量下降。宁紫2号对氮肥的需求相对较高,施用氮肥75 kg hm–2时鲜薯产量提高,而施氮量过高时薯块产量降低。因此,紫甘薯在含氮量较高的肥沃土壤上种植时,对氮肥的需求量较低,茎蔓和薯块的协调生长是提高块根产量和氮素利用效率的保障。  相似文献   

13.
施氮量对花生产质量及氮肥利用率的影响   总被引:2,自引:1,他引:2  
采用大田裂区随机区组设计试验,研究了施氮量对不同品种花生产质量和氮肥利用率的影响,以期为豫南砂姜黑土区花生高产优质和氮肥高效利用提供合理的施氮依据。研究结果表明,随着施氮量的增加,不同花生品种荚果产量均呈增加趋势,施氮量为180 kg/hm2时,豫花23、远杂9102和远杂6的花生产量均最高,分别比不施氮的增产30.45%、25.96%和21.46%;随着施氮量的增加,豫花23花生仁中蛋白质含量和粗脂肪含量均呈抛物线变化趋势,而远杂6和远杂9102花生仁中蛋白质含量呈增加趋势,粗脂肪含量呈降低趋势;除了施氮降低远杂6和远杂9102花生仁中蛋氨酸含量外,施氮均能增加其他花生蛋白质组分的含量;远杂9102的氮利用率最高,为36.7%;豫花23的农学效率和氮肥偏生产力均最大,分别为6.9 kg/kg和36.9 kg/kg。本试验条件下,豫花23、远杂6适宜的施氮量为180kgN/hm2,花生产量分别为5330.36 kg/hm2、5002.98 kg/hm2,远杂9102适宜的施氮量为135 kgN/hm2,花生产量为5199.40 kg/hm2。  相似文献   

14.
不同施氮量对冬小麦光合生理指标及产量的影响   总被引:3,自引:0,他引:3  
为了探索不同施氮量对冬小麦光合生理指标及产量的影响,在中国农业科学院作物科学研究所北京试验基地,以3个强筋冬小麦品种藁优2018(C1)、师栾02-1(C2)、石优20(C3)和1个中筋冬小麦品种济麦22(C4)为试验材料,设置0、180、210、240、270kg/hm 2 5个氮肥处理,分别用N0、N180、N210、N240、N270表示。结果表明:N240处理下不同冬小麦品种的旗叶净光合速率、SPAD值、旗叶长度、旗叶宽度,叶面积指数、归一化差值植被指数、籽粒产量及其构成因素等指标均达到最高值,且显著高于不施氮肥的处理,但与N270处理间无显著差异。综合考虑光合生理、植株性状、产量构成因素等指标,施氮量240kg/hm 2是充分发挥不同冬小麦品种植株光合性能及产量潜力的适宜施氮水平。  相似文献   

15.
为探明施氮量对超级杂交稻Y两优900产量形成与氮肥利用的影响,于2020-2021年在湖南省浏阳市开展大田试验,研究不同施氮量(N0:0kg/hm2;N1:120kg/hm2;N2:180kg/hm2;N3:240kg/hm2)处理下Y两优900的产量以及氮肥利用率差异。结果表明,Y两优900在N2处理下2年产量分别为8.77和8.82t/hm2,高于N0和N1处理,与N3处理差异不显著。穗数和穗粒数在各施肥处理间无显著差异,结实率在N2处理下高于其他2个处理,千粒重有随着施氮量增加而增加的趋势。N2处理的总干物质积累量低于N3处理,但其收获指数高于N3处理。随施氮量的增加,各处理氮肥农学利用率和氮肥偏生产力逐渐降低。N2处理的氮肥籽粒生产效率和氮收获指数均高于N3处理。由此可见,在本试验条件(中产区)下,180kg/hm2施氮量有利于在保证超级杂交稻Y两优900高产的同时,实现较高的氮肥利用率。  相似文献   

16.
为探明施氮量和种植密度对芝麻光合速率、产量及氮肥利用效率的影响,以白芝麻品种郑太芝1号为材料,设置纯氮0、60、100和140kg/hm2 4个施氮水平以及11.25、18.75和26.25万株/hm2 3个种植密度水平,对芝麻光合速率、产量及氮肥利用率进行分析。结果表明,同一施氮量条件下,随着种植密度的增加,叶片净光合速率、叶绿素相对含量、氮肥收获指数、单株蒴数及千粒重逐渐降低,而植株秸秆氮和总氮量逐渐提高;氮肥吸收利用率和氮肥农学利用率以18.75万株/hm2处理最高。100kg/hm2施氮量处理产量最高,2年中分别较不施氮肥处理增产19.70%和16.91%。同一密度下,叶片净光合速率、单株蒴数、单蒴粒数和千粒重随着施氮量的增加而升高,不同密度处理以18.75万株/hm2处理产量最高,2年较11.25万株/hm2处理分别增产15.30%和16.69%。不同处理组合中施氮量100kg/hm2、密度18.75万株/hm2处理的产量最高,且氮肥吸收利用率为50%以上,氮肥农学利用率为4.27kg/kg以上,是白芝麻高产高效的最优组合。  相似文献   

17.
施氮水平对冬小麦旗叶光合特性的调控效应   总被引:12,自引:1,他引:12  
在大田试验条件下,对大穗型小麦品种兰考矮早八旗叶光合特性及氮素调控效应进行了研究。结果表明,旗叶叶绿素含量随籽粒灌浆进程呈逐渐降低的趋势。PSⅡ潜在活性、PSⅡ光化学的最大效率、荧光光化学猝灭系数等随生育进程呈先升高后降低的变化趋势,且均在开花期达到最大值,之后逐渐下降;荧光非光化学猝灭系数则在成熟期达到最大值。氮肥对旗叶光合特性有一定的调控效应,Chl,Fv/Fo,Fv/Fm及qP均随施氮水平的增加呈增加的趋势,其中Chl和Fv/Fo以N3(180 kg hm-2)处理最大,Fv/Fm和qP(除孕穗期外)以N4(360 kg hm-2)处理最大;qN则随施氮水平增加呈降低的趋势,以N4处理最小。适宜的施氮量(180 kg hm-2)改善了兰考矮早八的光合色素性状,提高PSⅡ潜在活性及PSⅡ光化学的最大效率,减少荧光非光化学猝灭系数,从而有助于籽粒产量的提高。  相似文献   

18.
以4个不同氮效率基因型茄子为供试材料,采用营养液进行培养,研究了正常供氮和低氮胁迫下,茄子五叶期到八叶期的光合特性.结果表明,与正常供氮相比,低氮胁迫下,不同氮效率基因型茄子的光合速率(Pn)、叶片叶绿素相对含量(SPAD)和光系统Ⅱ的最大光化学效率(Fv/Fm)均较低,并表现先上升后下降趋势;与低氮高效及双低效基因型相比,氮双高效基因型具有较强的光合能力.  相似文献   

19.
地力与施氮量对超级稻产量、品质及氮素利用率的影响   总被引:21,自引:0,他引:21  
以超级稻中熟中粳徐稻3号为供试材料,研究麦茬田高、中、低3种地力水平下施氮肥(0、148.5、223.5、297.0、372.0、445.5 kg hm-2)对超级稻产量及其构成因素、氮素利用率、稻米品质的影响。结果表明:(1)徐稻3号的产量在不同施氮水平下均表现高地力>中地力>低地力的趋势;高、中、低地力上出现的最高产量对应的最适施氮量分别为260.8 kg hm-2、290.5 kg hm-2、345.5 kg hm-2。(2)氮肥表观利用率与施氮量之间存在显著或极显著的二次相关关系,高、中、低3种地力土壤条件下氮肥最高利用率对应的施氮量分别为268.6 kg hm-2、293.4 kg hm-2、335.2 kg hm-2。(3)培肥地力有利于稻米营养品质、加工品质、蒸煮食味品质的提高,不同地力土壤要施适量氮肥才可以改善稻米的外观品质,优化稻米的营养品质。综合以上超级稻高产、优质、高效的施氮范围,建议该区超级稻施氮范围为高地力田240.0~270.0 kg hm-2,中地力田285.0~315.0 kg hm-2,低地力田330.0~360.0 kg hm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号