首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东北黑土活性有机碳、氮分布研究   总被引:1,自引:0,他引:1  
通过对东北黑土区不同地点、不同层次的土壤样品的分析,探索活性有机碳(轻组有机C,N、颗粒有机C,N和易氧化有机C,N)在东北地区的分布情况。结果表明,随着纬度的增加,土壤活性有机C、N含量增加;随着深度的增加,土壤活性有机C、N含量减少。说明纬度低的地区,活性有机碳库转化较快,库容较小,而耕作措施相近的情况下,植物残体和根残体在有机C积累方面应予以重视。  相似文献   

2.
Soil density fractionation is a common tool to separate organic matter of different function and turnover. But it has not been tested so far how much soil material is necessary to obtain reproducible results. A reduction of chemicals like polytungstate would further save valuable resources. Here, we show that soil weight reduction from 25 to 5 g was not significantly affecting fractionation results. Compared to the commonly used 10–25 g, this corresponds to a saving of resources of up to 80%.  相似文献   

3.
One of the main advantages of using biochar for agricultural purposes is its ability to store carbon (C) in soil for a long-term. Studies of labile and stable fractions of soil organic matter (SOM) may be a good indicator of the dynamics of biochar in soils. This study evaluated the effects of applying sewage sludge biochar (SSB) in combination with mineral fertilizer on fractions of SOM. To conduct this evaluation, 15 Mg ha?1 of SSB combined or not with mineral fertilizer (NPK) was applied to the soil in two cropping seasons. Apart from total organic C (TOC), the labile and stable fractions of SOM were also determined. The combined use of SSB and NPK resulted in higher TOC, a 22% to 40% increase compared to the control and to the NPK treatments, respectively. The SSB produced at a lower temperature increased the labile fractions of SOM, especially the microbial biomass C, showing its capacity to supply nutrients in the short-term. The stable pools of SOM are increased after adding SSB produced at a higher temperature. It was concluded that pyrolysis temperature is a key-factor that determines the potential of SSB to accumulate C in labile and stable fractions of SOM.  相似文献   

4.
Corn straw is an important source of carbon (C),and when applied to soil,it alters the accumulation and distribution of organic C.However,the mechanistic pathways by which newly added C is stored and stabilized in soil remain a subject of interest and debate among scholars.In this study,we investigated the chemistry of organic matter in different density fractions of Haplic Cambisol (sandy clay loam) in a field experiment with corn straw at8 900 kg ha-1year-1under no tillag...  相似文献   

5.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

6.
土壤团聚体的形成与分散及其在农业生产上的应用   总被引:8,自引:2,他引:8  
土壤团聚体是保持土壤水分和土壤透性的基本单元.本综述的目的是通过围绕团聚体理论的讨论,明确影响团聚体形成的因素,为农田维护提出可靠的理论依据.首先总结了团聚体形成的主要理论,即Emerson的粘团理论、Edwards和Bremner的微团聚体理论和Oades 及Waters的团聚体分级构建理论,然后讨论了土壤有机质、可溶性阳离子和氧化铁、铝3个影响团聚体形成的主要因素,最后分析了团聚体破坏的机理和评价团聚体稳定性的主要方法,指出保持土壤颗粒的凝聚状态、增加各种形态的土壤有机质是增加土壤团聚性的主要措施.  相似文献   

7.
张崇玉  李生秀 《土壤学报》2007,44(4):695-701
采集了全国不同类型的土壤40个,分析了土壤全氮、有机质、固定态铵、剩余有机质(KOBr处理后的土壤有机质)、残渣有机质(KOBr-HF处理后的土壤有机质)含量.结果表明,以2∶1型粘粒矿物为主土壤的残渣有机质含量与固定态铵含量之间呈极显著正相关(r=0.831^**),晶格之间存在的有机质(即残渣有机质与剩余有机质之差值)含量则与固定态铵含量之间也呈极显著正相关(r=0.832^**),而以1∶1型粘粒矿物为主土壤的残渣有机质含量和晶格有机质含量与固定态铵含量不相关;土壤剩余有机质、残渣有机质的含量分别为2.59 g kg^-1、3.70 g kg^-1,分别占土壤有机质的10%和16%.土壤残渣C/N比(平均值为16.69)明显高于原土壤(平均值为5.37).  相似文献   

8.
Plants with different photosynthetic cycles (C3 and C4) and different plant parts (root or shoot) contribute in different ways to soil organic carbon (SOC). In addition, phosphate and nitrogen fertilization also act differently on the SOC stock. In this study, roots or shoots of corn (C3) and soybean (C4) plants were incorporated into samples of an Oxisol, with or without the addition of nitrogen (N) and phosphorus (P) and had the emission of carbon (C)- carbon dioxide (CO2) measured during 45 days. Subsequently, soil organic matter fractionation, carbon and nitrogen microbial biomass and 13C isotopic discrimination were performed. The greatest increment in SOC was observed by adding corn plant material rather than soybean material. For both crops, the greatest contribution to SOC was achieved by adding roots as compared to shoots. Phosphorus addition produced greater microbial activity, followed by the addition of NP and then the addition of only N.  相似文献   

9.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

10.
11.
Abstract

Procedures for determining organic matter indirectly and directly in sludges are described. A good agreement between chromic acid oxidation and dry—combustion elemental analysis methods of determining organic‐C was observed. Sludge organic matter content was determined directly by loss‐on‐ignition by thermal analysis. An average C factor of 1.68 to estimate the organic matter from organic‐C, obtained by chromic acid oxidation method, was calculated for aerobically digested sludges.  相似文献   

12.
Soil water repellency affects the hydrological functions of soil systems. Water repellency is associated with the content and the composition of soil organic matter. In the present study, we examined the effects of hydrophobic and hydrophilic organic matter contents, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content on water repellency using model sandy soils. Stearic acid and guar gum were used as the hydrophobic and hydrophilic organic compounds, respectively. Water repellency was estimated using the sessile drop method. Hydrophobic organic matter content was found to be the dominant factor affecting soil water repellency. Hydrophilic organic matter was found to increase the contact angle to some extent without the presence of hydrophobic organic matter. With the presence of both hydrophobic and hydrophilic organic matter, the effects of the hydrophilic organic matter content on contact angle were found to be dependent on the hydrophobic organic matter content of the soil. This relationship was explained by the differences in the surface free energies of different organic matter and mineral surfaces. The contact angle increased with increasing hydrophobic/hydrophilic organic matter ratio when the hydrophilic organic matter content was constant. When the hydrophobic organic matter content was constant, contact angles were roughly comparable, irrespective of the hydrophobic/hydrophilic organic matter ratio. The contact angles were not comparable at each total organic matter content. Accordingly, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content in soil may not provide satisfactory information about soil water repellency.  相似文献   

13.
以长期定位试验点的紫色水稻土为研究对象,研究了耕作制度对紫色水稻土活性有机质和碳库管理指数的影响。结果表明:稻田长期垄作免耕0~10cm土层有机质含量比常规平作高,10~60cm土层有机质含量则比常规平作低;表明稻田长期垄作免耕土壤有机质具有表层富集现象;水旱轮作各土层有机质含量均比常规平作低。垄作免耕各土层活性有机质含量普遍增加,水旱轮作表层(0~10cm)活性有机质含量减少,其余土层变化不大。对活性有机质组分含量的研究表明:与常规平作相比,垄作免耕增加了土壤表层活性有机质各个组分的含量,在其余土层增加了低活性有机质含量,而减少了高活性有机质含量;水旱轮作增加了各土层低活性有机质含量而减少了中活性和高活性有机质含量。垄作免耕所有土层的碳库管理指数都在100以上,水旱轮作除表层(0~10cm)小于100以外,其余土层都在100以上。由此可见,农业管理措施对土壤有机质、活性有机质及碳库管理指数有较大影响。  相似文献   

14.
Soil nitrogen (N) mineralization rates from different agricultural regions in California were determined and related to soil properties. Undisturbed soil cores were sampled in spring from 57 fields under annual crop rotations and incubated at 25℃ for 10 weeks. Soil properties varied across and within regions, most notably those related to soil organic matter (SOM), with total soil carbon ranging from 6 to 198 g kg?1. Multivariate linear regression was used to select soil properties that best predicted N mineralization rates. Regression models with a good fit differed between soils with high and low SOM contents, but generally included a measure of SOM quantity, its quality as well as soil texture or mineralogy. Adjusted R2 values were 0.95 and 0.60 for high and low SOM soils, respectively. This study has shown that information on soil properties can contribute to better estimates of N mineralization in soils of contrasting characteristics.  相似文献   

15.
Past land‐use changes, intensive cropping with large proportions of root crops, and preferred use of mineral fertilizer have been made responsible for proceeding losses of soil organic C (SOC) in the plough layer. We hypothesized that in intensive agriculturally managed regions changes in SOC stocks would be detectable within a decade. To test this hypothesis, we tracked the temporal development of the concentrations and stocks of SOC in 268 arable sites, sampled by horizon down to 60 cm in the Cologne‐Bonn region, W Germany, in 2005 and in 2013. We then related these changes to soil management data and humus balances obtained from farmers' surveys. As we expected that changes in SOC concentrations might at least in part be minor, we fractionated soils from 38 representative sites according to particle size in order to obtain C pools of different stability. We found that SOC concentrations had increased significantly in the topsoil (from 9.4 g kg?1 in 2005 to 9.8 g kg?1 in 2013), but had decreased significantly in the subsoil (from 4.1 g kg?1 in 2005 to 3.5 g kg?­1 in 2013). Intriguingly, these changes were due to changes in mineral‐bound SOC rather than to changes in sand‐sized organic matter pools. As bulk density decreased, the overall SOC stocks in the upper 60 cm exhibited a SOC loss of nearly 0.6 t C (ha · y)?1 after correction by the equivalent soil mass method. This loss was most pronounced for sandy soils [?0.73 t SOC (ha · y)?1], and less pronounced for loamy soils [?0.64 t SOC (ha · y)?1]; silty soils revealed the smallest reduction in SOC [?0.3 t SOC (ha · y)?1]. Losses of SOC occurred even with the overall humus balances having increased positively from about 20 kg C (ha · y)?1 (2003–2005) to about 133 kg C (ha · y)?1 (2005–2013) due to an improved organic fertilization and intercropping. We conclude that current management may fail to raise overall SOC stocks. In our study area SOC stocks even continued to decline, despite humus conservation practice, likely because past land use conversions (before 2005) still affect SOC dynamics.  相似文献   

16.
The effect of cereal straw with added mineral N fertilization on crop yields, N uptake, total organic C content and hot water soluble C content in topsoil and on the relationships between organic C content in topsoil and organic matter balance was evaluated in a long-term field experiment established in 1966. The effect of straw plus mineral N fertilization was similar to the effect of farmyard manure (FYM) in the dry matter yields and also in the N uptake by plants. The effect of straw and mineral N fertilization on the organic C accumulation in soil was inferior to the effect of farmyard manure. Relationships between organic matter balance and total organic C content in the topsoil was positive and statistically significant. A favourable effect of mineral NPK fertilization on the C sequestration to soil was related to the effect of FYM fertilization.  相似文献   

17.
土壤中溶解性有机物及其影响因素研究进展   总被引:2,自引:1,他引:1  
溶解性有机物(DOM)是陆地生态系统中极为活跃的有机组分,是土壤圈层与相关圈层(如生物圈、大气圈、水圈和岩石圈等)发生物质交换的重要形式。它不但是土壤微生物最重要的能量与物质来源,影响微生物的新陈代谢,而且对土壤营养元素(如C,N,P)和污染物的化学活性与生物活性也有直接影响。因此,土壤中溶解性有机物的消长动态已成为当前农业生态学领域的研究焦点问题之一。本文综述了土壤中溶解性有机物的迁移转化规律和主要影响因素,并指出未来的研究重点应在以下几个方面:(1)土壤有机质性质对DOM释放的影响。(2)有机质对DOM数量和质量的影响(3)生物和物理化学因素对土壤中DOM吸附和解吸的影响(4)DOC、DON和DOP迁移转化的差异。  相似文献   

18.
不同有机物料投入下黄河故道土壤有机碳积累特征的研究   总被引:2,自引:1,他引:1  
潮土有机质含量低、结构差是限制黄河故道区作物优质高产的主要原因.通过连续施用不同种类及用量有机物料,探究有机物料投入下,黄河故道区土壤有机质的积累特征,为该区土壤快速固碳提供理论依据和参考方案.试验采用随机区组设计,设置7个处理:单施氮磷钾肥作为对照(CK),其他处理在单施氮磷钾肥的基础上增施有机肥6 000 kg/h...  相似文献   

19.
The effect of soil organic matter (SOM) on sorptive parameters under different soil management practices in Rendzic Leptosol was studied. In 2006, an experiment of different management practices in a productive vineyard was established in the locality of Nitra-Dra?ovce (Slovakia). The following treatments were established: (1) control (grass without fertilization), (2) T (tillage), (3) T + FYM (tillage + farmyard manure), (4) G + NPK3 (grass + 3rd intensity of fertilization for vineyards), (5) G + NPK1 (grass + 1st intensity of fertilization for vineyards). Soil samples were collected every month during the year 2010. Obtained results showed increased hydrolytic acidity (by 23%), sum of basic cations (by 37%) and decreased total cation exchange capacity (CEC) (by 36%) with higher doses of fertilization in comparison to control. Application of farmyard manure had a positive effect on the increase in the SOM cation sorption capacity. Positive correlations between pH and sum of basic cations (SBC) (r = 0.493, ≤ 0.001), CEC (r = 0.498, ≤ 0.001) and cation sorption capacity of SOM (r = 0.391, ≤ 0.01) were observed. Higher values of labile carbon:potentially mineralizable nitrogen (CL:Npot) ratio corresponded with lesser CEC, SBC and base saturation values in the soil. With increased humus quality (higher values of humic acid:fulvic acid (CHA:CFA) ratio), cation sorption capacity of SOM significantly increased (r = 0.329, p ≤ 0.01). The results of this study proved that the application of farmyard manure had a positive effect on the increase of SOM sorption capacity, but higher doses of mineral fertilizers added to soil had a negative effect.  相似文献   

20.
Global warming leads to the melting of ice caps and glaciers and, consequently, the exposure of new areas of land to the atmosphere and weathering. These areas usually have a high reactivity to both biotic and abiotic changes. Proglacial areas in the Alps usually have a deglaciation time span of around 150 years (time since the end of the “Little Ice Age” in the 1850's). We investigated a chronosequence of very young soils in the proglacial area Morteratsch (Swiss Alps) to derive time-trends of soil organic matter accumulation and evolution. Total organic C and N contents, C and N contents of the various organic matter (OM) density fractions and of the labile (oxidised by H2O2) and stable (H2O2-resistant) fractions were measured. Further characterisation of OM and the various fractions was performed using Diffuse Reflection Infrared Fourier Transform (DRIFT). Soil organic matter has been accumulated over 150 years at very high rates, values lay between 7 and 36 g C/m2/year. This led to a soil organic matter abundance of about 1–5.5 kg C/m2 after 140 years. Even at the start of soil formation, a very stable fraction of soil organic matter was detectable. Stable organic matter (resistant to the H2O2 treatment) comprised about 6% of the total soil organic carbon and 10% of the total nitrogen. At the start of soil formation, a very high proportion of soil organic matter was present in the density fractions < 1.6 g/cm3. After about 140 years, 15% of soil organic carbon and 35–40% of the nitrogen was already present in the highest density fraction (> 2 g/cm3). With time, the quality of soil organic matter changed: a decrease of hydrophobicity, an increase in aromatic compounds in the bulk soil and a decrease in phenolic functional groups in the heaviest density fraction were detectable with increasing age. In general, stable organic matter as well as the density fraction > 2 g/cm3 had a low C/N ratio and were enriched in proteinaceous materials. The adsorption of proteinaceous materials points to a strong organo-mineral association. This process has existed since the very beginning of soil formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号