首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

2.
Elastic and strength properties(proportional-limit stress(σ prop ),Young's modulus(E),breaking stress(σ max )in static bending parallel to grain in a longitudinal direction),as well as stress relaxation in air-dried condition and water-saturated conditions at seven different constant temperatures and increasing and decreasing temperatures were investigated for wood from Chinese-fir and poplar plantations.The results show that hygrothermal conditions considerably affect these mechanical properties.The higher the moisture content(MC)or temperature,the lower the strength of wood.Further investigation of the effects of constant temperature on stress relaxation indicates that high temperature specimens have low relaxation moduli and high fluidity.In the case of increasing temperature the range of the modulus of relaxation is larger than in the case of a reduction in temperature,while the residual moduli do not show large differences.This is because the modulus at high temperatures decreases more than that at low temperatures.The fluidity of specimens in a state of water desorption increases slowly at the beginning,increases quickly until the MC reaches an equilibrium moisture content(EMC)and then becomes stable,which is quite different from that in a water-saturated state.Fluidity in a desorption state is much higher than in a water-saturated state.This is probably due to the fact that the former is in an unstable state which can be interpreted as a state with internal strain and has therefore a greater potential to release strain.  相似文献   

3.
Mechanical property changes due to the moisture content (MC) and/or temperature changes were examined for 15 Indonesian wood species. A static bending test was carried out at 20°C, 65% relative humidity (air-dry), and water-saturated at 20°C (wet-20) and 80°C (wet-80). For individual test conditions, modulus of elasticity (MOE) and modulus of rupture (MOR) increased linearly with specific gravity regardless of wood species; however, maximum deflection did not correlate with specific gravity for any MC or temperature conditions. The relative values of MOE and MOR measured in wet-20 to air-dry conditions were variously affected from slightly to strongly depending on the wood species. However, the relative values always decreased markedly when saturated in water at 80°C, regardless of wood species. The relative MOE, MOR, and maximum deflection values due to the change in MC or MC and temperature combined were independent of specific gravity but may be dependent on wood type: softwood or hardwood.  相似文献   

4.
As a follow-up report, the pre-treatment by compression for wood drying was systematically studied in terms of the reduction of moisture content (MC), the recovery rate (RR), and mechanical properties of wood compressed at different MC conditions. The results showed that MC after compression on water-saturated wood determined the critical value of MC before compression which were about 84 and 105% at a compression ratio of 60 and 40% for Poplar and Chinese fir, respectively. Beyond the critical value, MC after compression remained constantly at about 84% and decreased slightly from 105% for Poplar and Chinese fir, respectively. The MC reduction decreased with the decrease of MC before compression. The MC reduction was rather effective when the MC before compression was higher than the critical value and was recommended to pre-treat for the effectiveness of MC reduction. In addition, after the recovery, the wood volume and mechanical properties were well retained for the wood compressed at all MC conditions which were above fiber saturation point (FSP) before and after compression. Therefore, the pre-treatment by compression is viable in terms of the RR and mechanical properties at rather broad MC conditions above FSP. Moreover, the compression force needed for treatment was almost same at these MC conditions.  相似文献   

5.
Summary Diffusion analysis can be used to estimate the time required to dry lumber. However, more accurate calculations require additional information on the relationship between the diffusion coefficient as a function of moisture content and on the effects of temperature, equilibrium moisture content, board thickness, and air velocity on drying time and moisture gradients. The primary objectives of this study were (1) to determine the diffusion coefficient of northern red oak (Quercus rubra) as a function of moisture content and (2) to compare experimentally determined sorption times and moisture content gradients with those calculated by the diffusion model. The diffusion coefficient was found to increase approximately exponentially with moisture content over a range of 6 to 30 percent at 43°C. This relationship was similar in both adsorption and desorption tests. Experimental adsorption and desorption times and desorption moisture content gradients were compared with finite difference solutions to the diffusion equation. Practical uses of solutions to the diffusion equation are illustrated for kiln drying wood that has first been predried to below the fiber saturation point. Drying time is also related to variable kiln conditions and board thickness.This research was partially funded under the U. S. Department of Agriculture Competitive Grant programThe Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time  相似文献   

6.
Summary The process of absorption and desorption of water by two-dimensional transport in wood was studied at a moisture content beyond the fiber saturation point. The transverse directions through a square wood beam were considered. A numerical model capable of describing the process was constructed and successfully tested. It can predict by calculation the kinetics of absorption when wood is immersed into water and the kinetics of desorption when it is exposed to air. The model gives a fuller insight into the process with the profiles of moisture content developed through the cross-section of the wood at any time.This work was carried out with the help and support of the French MRT and Wood Technical Center (CTBA)  相似文献   

7.
The present study examines the three-dimensional hygric and mechanical behavior of oak wood. The moisture equilibrium state, characterized by the sorption isotherms, was obtained from measurements taken during adsorption and desorption cycles. Sorption behavior was analyzed with the Dent theory and compared considering the sorption direction (adsorption/desorption cycle). Sorption parameters were provided for possible numerical applications in hygric material models. The corresponding swelling and shrinkage behavior was examined and characterized by the moisture expansion parameters for all anatomical directions. Orthotropic mechanical material behavior was characterized by determining the elastic engineering (Young's moduli, shear moduli, and Poisson's ratios) and the bending, compressive and compressive shear strength material parameters. Influence of moisture content (MC) on the mechanical material properties was studied using Young's moduli, Poisson's ratios, and the investigated strength parameters. A significant difference between the sorption behavior in adsorption and desorption, known as the hysteresis effect, could be proved. Furthermore, swelling and shrinkage behavior did not show any dependency on the adsorption/desorption cycle. The results confirm the significant influence of MC on the Young's moduli and the strength properties, however, did not validate an influence on the Poisson's ratios.  相似文献   

8.
Summary Two types of machines, a conventional planer, and a fixed-knife pressure-bar planer were used to prepare matched specimens of sugar maple wood. After adsorption and desorption, both experiments at 21 °C, the EMC, swelling in all principal directions as well as compliance coefficient in radial compression were measured. Two specimen sizes were used for these expe‐riments. For a given equilibrium moisture content, tangential and radial dimensions were greater after desorption than after adsorption, as previously described. When equilibrium was reached by gaining moisture, the wood was stiffer in radial compression compared to when the equilibrium was reached after losing moisture. The magnitude of this phenomenon, second-order effects of moisture sorption, was slightly affected by the type of planing. These effects on swelling were greater for large specimens prepared by conventional planing compared to fixed-knife pressure-bar planing. Small specimens showed similar magnitudes of this phenomenon with both planing methods. No differences between planing methods were found for the radial compliance coefficient measured on either specimen size. Therefore, the second-order effects of moisture sorption appeared to be a bulk phenomenon and not restricted to the superficial layers of wood. Received 9 December 1997  相似文献   

9.
The effects of temperature and moisture content on selected mechanical properties associated with the chipping process were evaluated. In chipping, mechanical properties such as shear parallel to the grain, cleavage, and bending are involved. Matched samples of heartwood and sapwood were obtained from freshly harvested logs of black spruce and balsam fir to determine the variation of the studied mechanical properties between ?30 and 20 °C, at intervals of 10 °C. Moisture content (MC), basic density (BD), and annual ring width (RW) were measured for each sample. For both wood species, temperature had a significant effect on all mechanical properties under freezing conditions (below 0 °C). This effect was more important for sapwood than for heartwood, which was explained by the difference in MC between these two types of wood. Between 0 and 20 °C, temperature and type of wood did not show any significant effect on the mechanical properties. Multiple regression models were obtained to predict the mechanical properties. These regressions showed that MC was the most important factor to explain the mechanical properties below 0 °C. However, for temperatures of 0 °C and higher, BD was the principal factor to predict the mechanical properties. RW was not a significant factor to predict any mechanical property. Cleavage was the most sensitive one to changes in temperature followed by shear, modulus of rupture, and modulus of elasticity. These results could be of great importance in the chipping process.  相似文献   

10.
The effect of moisture content on the stress wave propagation velocity was investigated in order to estimate the Young’s modulus of full-scale timbers in an air-drying state using the measurement of stress wave propagation velocity above the fiber saturation point. Using Japanese cedar lumber, the velocity and the density under high-moisture condition and air-drying states were measured respectively; after measuring the modulus of elasticity in an air-drying state, the moisture content of each condition was measured. By performing numerical analysis on these data, the relationship between the moisture content and the rate of change of velocity of full-scale timbers was derived. This relationship was used to estimate the Young’s modulus of the timber in the air-drying state from the velocity in high-moisture condition. First, the velocity and the Young’s modulus in an air-drying state were estimated accurately from its density, moisture content and velocity under high-moisture condition. In cases where the density could not be measured, using the database of mechanical properties with the Monte Carlo simulation method, the Young’s modulus of the full-scale timber in an air-drying state might be estimated within 20% accuracy from its moisture content and velocity under high-moisture condition.  相似文献   

11.
A new method for monitoring moisture content during radio-frequency (RF)/vacuum drying was developed by measurement of temperature and pressure in wood. Temperature and pressure inside the wood were measured simultaneously during RF/vacuum drying at the same point. The relative humidity (RH) and moisture content (MC) below the fiber saturation point (FSP) were calculated based on temperature and pressure, and the relationship between the temperature, RH, and equilibrium moisture content (EMC) at the measurement point. When the moisture content was below the FSP, the calculated MC was slightly greater than the value given by oven drying. The absolute error was within 0.8% near the open cross side, and was within 1.8% at another measurement point. Thus, we concluded that it was practicable to monitor the moisture content below the FSP according to the temperature and pressure inside the wood. Part of this study was presented at the 15th Annual Meeting of the Chugoku Shikoku Branch of the Japan Wood Research Society, Higashi-Hiroshima, Japan, September 2003  相似文献   

12.
We measured the longitudinal and tangential shrinking processes in wood specimens from Chamaecyparis obtuse Endl. with different microfibril angles (MFAs). The shape of the shrinking curve was compared with the MFA. Only the longitudinal shrinking process of specimens with a small MFA clearly showed nonlinearity, and the degree of nonlinearity increased as the MFA decreased. In contrast, the tangential shrinking process and the longitudinal shrinking process of compression wood with a large MFA were linear. The nonlinearity is probably caused by the longitudinal shrinkage of the noncrystalline region of the cellulose microfibril (CMF) in regions of low moisture content during water desorption. When the moisture content is high, the matrix substance in the cell wall begins to dry; however, the shrinkage in the chain direction is restrained by the rigid CMF. As the wood dries further, the noncrystalline region of the CMF embedded in the matrix substance begins to shrink. Because the longitudinal mechanical behavior of wood with a small MFA is greatly affected by a rigid CMF, longitudinal shrinkage increases suddenly at about 10% moisture content; as a result, the shrinking process shows nonlinearity.  相似文献   

13.
Changes in physical and mechanical properties of wood were analyzed using sorption tests combined with dimensional measurements and perpendicular-to-the-grain tangential compression tests. In order to determine the influence of wood structure on these changes, three hardwood species (Fagus grandifolia, Brosimum alicastrum and Cariniana domestica) presenting different anatomical structures were studied. Two experimental techniques were used to perform moisture sorption tests at 25°C. The first technique used saturated salt solutions (from 33 to 90% relative humidity) and the second used the pressure membrane method (above 96% relative humidity). Special attention was given to the “fiber saturation region”, where changes in wood properties started to take place. Results showed that at equilibrium moisture content (EMC), radial, tangential and volumetric shrinkage, as well as changes in transverse strength occurred above the fiber saturation point (FSP). This behavior can be explained by the effect of hysteresis at saturation on wood properties. This hysteresis indicates that loss of bound water takes place in the presence of liquid or capillary water, which contradicts the concept of FSP. The initial EMC at which bound water starts to be removed varied largely among the wood species.  相似文献   

14.
Chemical components are the main factors affecting the mechanical properties of wood fibers. Lignin is one of the main components of wood cell walls and has a critical effect on the mechanical properties of paper pulp and wood fiber based composites. In this study, we carried out tensile tests on single mature latewood tracheids of Chinese fir (Cunninghamia lanciolata (Lamb.) Hook.), using three different delignified treatment methods to obtain different amounts of lignin. We applied single fiber tests to study the effect of the amount of lignin on mechanical tensile properties of single wood fibers at the cellular level. The results show that in their dry state, the modulus of elasticity of single fibers decreased with the reduction in the amount of lignin; even their absolute values were not high. The amount of lignin affects the tensile strength and elongation of single fibers considerably. Tensile strength and elongation of single fibers increase with a reduction in the amount of lignin.  相似文献   

15.
Summary Samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with swelling tests at 25 °C. The results demonstrate that, for a given equilibrium moisture content, tangential and radial dimensions, and hence the volume of wood, are greater after desorption than after adsorption. The importance of these differences, so-called second-order effects of moisture sorption, varied with the species and with the direction of swelling. These effects are proportionally greater in the tangential direction of wood than in its radial axis. Finally, two types of samples showed similar swellings for three equilibrium moisture contents.The author wishes to thank Professor M. Goulet for his support and help. This research was supported by the Canadian International Development Agency and the Natural Sciences and Engineering Research Council of Canada  相似文献   

16.
马尾松微波间歇干燥对干燥效率与速率的影响   总被引:4,自引:0,他引:4  
分析马尾松木材微波干燥速率随时间的变化规律,比较微波连续辐射和间歇辐射对木材干燥速率和微波能利用效率的影响.结果表明:木材微波干燥过程可以分成加速段、恒速段和减速段3个阶段;在微波干燥过程中,木材含水率在纤维饱和点以上时,其平均干燥速率和水分蒸发效率比在纤维饱和点以下时的高;采用适当间歇辐射对木材输入微波能,微波能利用率较高.  相似文献   

17.
广宁县竹香骨下脚料制备竹碎料刨花板及其复合改性研究   总被引:1,自引:0,他引:1  
采用竹香骨下脚料为原料,以脲醛树脂和三聚氰胺改性脲醛树脂胶粘剂制备竹碎料刨花板,并与木纤维复合改性,检测并分析了内结合强度、静曲强度、弹性模量和吸水性。结果表明,在热压温度为160℃时,竹碎料板和竹木复合碎料板的物理力学性能均满足国标规定在干燥状态下使用的普通用板要求。当木纤维与竹碎料复合后,复合板材的静曲强度和弹性模量有一定程度提高,但内结合强度降低。  相似文献   

18.
 To predict the origin of longitudinal elasticity of the solid wood in relation to the composite structure of the wood cell wall, an analytical procedure was developed on the basis of the idea of “the reinforced-matrix hypothesis” originally introduced by Barber and Meylan (1964). A multi-layered circular cylinder, having the CML, the S1, and the S2 layers, was used as a model of the ligno-cellulosic (wood) fiber, and the elastic properties of an isolated wood fiber were formulated mathematically. In the formulation, not only the structural factors, such as the microfibril angle and the thickness of each layer, but also the environmental condition, e.g. the moisture content, were taken into consideration. The effects of the moisture content and the microfibril angle upon the longitudinal Young's modulus and the Poisson's ratio of the wood fiber were simulated by using the newly derived formulae. It is anticipated to give a start to estimate the fine structure and the internal properties of the cell wall constituents in relation to the macroscopic behaviors of the wood through simulating the mechanical behaviors of the wood fiber. Received 17 August 1999  相似文献   

19.
Currently computed tomography (CT) scanning provides a non-destructive method to determine moisture content in wood in three dimensions. With the current methodology two measurements are needed, one with the scanned piece of wood’s moist state and one after drying. Then the difference of the images can be calculated. The drawback and challenge is that dimensional changes due to shrinkage of wood in the drying process have to be compensated for by image processing. In this study a dual-energy CT scanning method is tested based on the consecutive scanning of wood samples at different energy levels to differentiate water from wood, without the necessity to dry the sample and thus without the need for complex image correction. Not quantified but visible differentiations due to moisture content were obtained on small cubical pine samples of different densities by quick consecutives scans at 60 and 200?kV. The results suggest that given that the pixels in the CT images are representing absorption coefficients it should be possible to directly measure moisture content in wood non-destructively in small volume elements inside solid wood in three dimensions. Further applications of this technique in industrial CT scanning of wood are discussed.  相似文献   

20.
A combined effect of steaming and heat treatment was imposed on green Turkey oak wood, both for sapwood and heartwood. Steaming was carried out in an autoclave at 100–120–130°C whereas heating was carried out in an oven for 2?h at 120–180°C. Equilibrium moisture content at dry, intermediate and moist state both in desorption and adsorption, swelling, cup, twist, color change, and spectral reflectance measures were registered. Swelling and water absorption decreased due to the hydro-thermal treatment. During adsorption, heartwood showed a higher hygroscopic inertia compared to sapwood and this difference increased with temperature. Cup increased with temperature in the steaming process. Twist seemed to be affected more by quality of original trunks than treatments. The wood color was more sensitive at a steaming temperature of 130°C combined with heat treatment at 180°C. Transitional treatments assured more reliable results on homogenization of hue between sapwood and heartwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号