首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotic cells alternative splicing of messenger RNA precursors (pre-mRNA's) is a means of regulating gene expression. Although a number of the components that participate in regulating some alternative splicing events have been identified by molecular genetic procedures, the elucidation of the biochemical mechanisms governing alternative splicing requires in vitro reaction systems. The tissue specificity of P element transposition in Drosophila depends on the germline restriction of pre-mRNA splicing of the P element third intron (IVS3). Drosophila P element IVS3 pre-mRNA substrates were spliced accurately in vitro in heterologous human cell extracts but not in Drosophila somatic cell splicing extracts. Components in Drosophila somatic cell extracts that specifically inhibited IVS3 splicing in vitro were detected by a complementation assay. Biochemical assays for Drosophila RNA binding proteins were then used to detect a 97-kilodalton protein that interacts specifically with 5' exon sequences previously implicated in the control of IVS3 splicing in vivo. Inhibition of IVS3 splicing in vitro could be correlated with binding of the 97-kD protein to 5' exon sequences, suggesting that one aspect of IVS3 tissue-specific splicing involves somatic repression by specific RNA-protein interactions.  相似文献   

2.
Heterogeneous nuclear ribonucleoproteins: role in RNA splicing   总被引:107,自引:0,他引:107  
Splicing in vitro of a messenger RNA (mRNA) precursor (pre-mRNA) is inhibited by a monoclonal antibody to the C proteins (anti-C) of the heterogeneous nuclear RNA (hnRNA)-ribonucleoprotein (hnRNP) particles. This antibody, 4F4, inhibits an early step of the reaction: cleavage at the 3' end of the upstream exon and the formation of the intron lariat. In contrast, boiled 4F4, or a different monoclonal antibody (designated 2B12) to the C proteins, or antibodies to other hnRNP proteins (120 and 68 kilodaltons) and nonimmune mouse antibodies have no inhibitory effect. The 4F4 antibody does not prevent the adenosine triphosphate-dependent formation of a 60S splicing complex (spliceosome). Furthermore, the 60S splicing complex contains C proteins, and it can be immunoprecipitated with 4F4. Depletion of C proteins from the splicing extract by immunoadsorption with either of the two monoclonal antibodies to the C proteins (4F4 or 2B12) results in the loss of splicing activity, whereas mock-depletion with nonimmune mouse antibodies bodies has no effect. A 60S splicing complex does not form in a C protein-depleted nuclear extract. These results indicate an essential role for proteins of the hnRNP complex in the splicing of mRNA precursors.  相似文献   

3.
4.
The in vitro splicing reactions of pre-messenger RNA (pre-mRNA) in a yeast extract were analyzed by glycerol gradient centrifugation. Labeled pre-mRNA appears in a 40S peak only if the pre-mRNA undergoes the first of the two partial splicing reactions. RNA analysis after extraction of glycerol gradient fractions shows that lariat-form intermediates, molecules that occur only in mRNA splicing, are found almost exclusively in this 40S complex. Another reaction intermediate, cut 5' exon RNA, can also be found concentrated in this complex. The complex is stable even in 400 mM KCl, although at this salt concentration, it sediments at 35S and is clearly distinguishable from 40S ribosomal subunits. This complex, termed a "spliceosome," is thought to contain components necessary for mRNA splicing; its existence can explain how separated exons on pre-mRNA are brought into contact.  相似文献   

5.
6.
为研究剪接受体位点变异对剪接方式与效率的影响,对大白菜材料He2进行重测序,发现BrSPS1Fb-He2第6个内含子(I6)的剪接受体位点由AG突变为AC。对大白菜材料He2花瓣进行转录组测序并分析BrSPS1Fb-He2 read数据,结果显示,BrSPS1Fb-He2在pre-mRNA加工过程中发生了选择性剪接。BrSPS1Fb-He2可选择3个位置(A1、A2和A3)作为受体进行剪接,产生3种剪接异构体(S1、S2和S3),或者保留I6整个内含子,形成S4剪接异构体。大白菜BrSPS1Fb-He2的成熟mRNA中保留部分I6(S1和S2)或全部I6(S4),或者缺失部分E7外显子序列(S3)。综上,BrSPS1Fb剪接受体位点的单核苷酸多态性(single nucleotide polymorphisms,SNP)变异对其转录后剪接产生了显著影响。  相似文献   

7.
The Prader-Willi syndrome is a congenital disease that is caused by the loss of paternal gene expression from a maternally imprinted region on chromosome 15. This region contains a small nucleolar RNA (snoRNA), HBII-52, that exhibits sequence complementarity to the alternatively spliced exon Vb of the serotonin receptor 5-HT(2C)R. We found that HBII-52 regulates alternative splicing of 5-HT(2C)R by binding to a silencing element in exon Vb. Prader-Willi syndrome patients do not express HBII-52. They have different 5-HT(2C)R messenger RNA (mRNA) isoforms than healthy individuals. Our results show that a snoRNA regulates the processing of an mRNA expressed from a gene located on a different chromosome, and the results indicate that a defect in pre-mRNA processing contributes to the Prader-Willi syndrome.  相似文献   

8.
内含子的识别和选择性剪切   总被引:2,自引:0,他引:2  
陈县明 《安徽农学通报》2010,16(10):29-30,85
真核生物内含子的一个显著特征是在很多生物中其5'和3'剪切位点的基本序列都具有相对很高的保守性,内含子从mRNA前体转录产物中的去除和伴随的外显子的连接称作mRNA前体的剪切,它是构成真核基因表达和基因调控水平的一个重要方面。这个过程由许多具有有限序列和特殊空间结构的顺式作用元件控制,由被称为剪切体的核糖核蛋白复合体来执行。以内含子的识别和由于识别造成的选择性剪切进行了综述,试图去理解造成选择性剪切的分子机理。  相似文献   

9.
U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA.  相似文献   

10.
Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.  相似文献   

11.
Splicing of nuclear precursor messenger RNA (pre-mRNA) occurs on a large ribonucleoprotein complex, the spliceosome. Several small nuclear ribonucleoproteins (snRNP's) are subunits of this complex that assembles on the pre-mRNA. Although the U1 snRNP is known to recognize the 5' splice site, its roles in spliceosome formation and splice site alignment have been unclear. A new affinity purification method for the spliceosome is described which has provided insight into the very early stages of spliceosome formation in a yeast in vitro splicing system. Surprisingly, the U1 snRNP initially recognizes sequences at or near both splice junctions in the intron. This interaction must occur before the other snRNP's (U2, U4, U5, and U6) can join the complex. The results suggest that interaction of the two splice site regions occurs at an early stage of spliceosome formation and is probably mediated by U1 snRNP and perhaps other factors.  相似文献   

12.
For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.  相似文献   

13.
根据以往的报道,TMV基因只存在于细胞质中且不发生基因剪接,前体mRNA(Pre-mR鄄NA)的剪接只能发生在细胞核中。本研究应用RT-PCR,DNA序列测定及GUS INTRON的点突变和荧光检测等研究手段,首次发现TMV载体中GUS基因的表达和前体mRNA的剪接同时发生,证明了GUS基因在TMV载体上的剪接效应。  相似文献   

14.
15.
16.
Regulation of the synthesis of membrane-bound and secreted immunoglobulin mu heavy chains at the level of RNA processing is an important element for B cell development. The precursor mu RNA is either polyadenylated at the upstream poly(A) site (for the secreted form) or spliced (for the membrane-bound form) in a mutually exclusive manner. When the mouse mu gene linked to the SV40/HSV-TK hybrid promoter was microinjected into Xenopus oocytes, the mu messenger RNA (mRNA) was altered by coinjection of nuclei of mouse surface IgM-bearing B-lymphoma cells to include the synthesis of the membrane-bound form. An increase in the membrane-bound form was not observed when nuclei of IgM-secreting hybridoma cells or fibroblast cells were coinjected. Deletion of the upstream poly(A) site did not eliminate the effect of B-lymphoma nuclei suggesting that membrane-specific splicing is stimulated. Further, splicing of other mu gene introns was not affected by coinjection of B-lymphoma nuclei. These results suggest that mature B cells contain one or more transacting nuclear factors that stimulate splicing specific for membrane-bound mu mRNA.  相似文献   

17.
Z Q Pan  C Prives 《Science (New York, N.Y.)》1988,241(4871):1328-1331
Oligonucleotides complementary to regions of U1 and U2 small nuclear RNAs (snRNAs), when injected into Xenopus laevis oocytes, rapidly induced the specific degradation of U1 and U2 snRNAs, respectively, and then themselves were degraded. After such treatment, splicing of simian virus 40 (SV40) late pre-mRNA transcribed from microinjected viral DNA was blocked in oocytes. If before introduction of SV40 DNA into oocytes HeLa cell U1 or U2 snRNAs were injected and allowed to assemble into small nuclear ribonucleoprotein particle (snRNP)-like complexes, SV40 late RNA was as efficiently spliced as in oocytes that did not receive U1 or U2 oligonucleotides. This demonstrates that oocytes can form fully functional hybrid U1 and U2 snRNPs consisting of human snRNA and amphibian proteins.  相似文献   

18.
19.
Human immunodeficiency virus type 1 (HIV-1), in contrast with most other retroviruses, encodes trans-regulatory proteins for virus gene expression. It is shown in this study, by means of an in vitro splicing system, that nuclear extracts obtained from cells infected with HIV-1 contain a factor (or factors) that specifically inhibits splicing of a synthetic SP6/HIV pre-messenger RNA (pre-mRNA)-containing donor and acceptor splice sites in the coding region for the envelope protein. It is also shown that the SP6/HIV pre-mRNA is not capable of assembly in a ribonucleoprotein complex, spliceosome, in extracts from infected cells. These findings raise the possibility that specific inhibition of pre-mRNA splicing in the envelope protein coding region by HIV-1 trans-regulatory factors might be one control mechanism for efficient production of structural viral proteins and virion assembly.  相似文献   

20.
Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号