首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present investigation was to find out the effect of different parent materials and land use on soil erodibility. Four types of parent materials such as andesite, basalt, alluvial, and gypsum, and three land use types such as grass, clover, and maize, all wide spread in Erzurum Province in Turkey, were tested. Aggregate stability and soil erodibility factors were determined. The susceptibility of soils against erosion decreased in the order of parent materials basalt > andesite > alluvial > gypsum. Likewise, the susceptibility of land use can be sorted as follows: grass > clover > maize.  相似文献   

2.
X. Y. WANG  Y. ZHAO  R. HORN 《土壤圈》2010,20(1):43-54
Depth distribution of soil wettability and its correlations with vegetation type, soil texture, and pH were investigated under various land use (cropland, grassland, and forestland) and soil management systems. Wettability was evaluated by contact angle with the Wilhelmy plate method. Water repellency was likely to be present under permanently vegetated land, but less common on tilled agricultural land. It was mostly prevalent in the topsoil, especially in coarse-textured soils, and decreased in the subsoil. However, the depth dependency of wettability could not be derived from the investigated wide range of soils. The correlation and multiple regression analysis revealed that the wettability in repellent soils was affected more by soil organic carbon (SOC) than by soil texture and pH, whereas in wettable soils, soil texture and pH were more effective than SOC. Furthermore, the quality of SOC seemed to be more important in determining wettability than its quantity, as proofed by stronger hydrophobicity under coniferous than under deciduous forestland. Soil management had a minor effect on wettability if conventional and conservation tillage or different grazing intensities were considered.  相似文献   

3.
土地利用方式对湿润亚热带土壤硝化作用的影响   总被引:27,自引:0,他引:27  
蔡祖聪  赵维 《土壤学报》2009,46(5):795-801
在土壤最大持水量60%和30℃条件下对采自江西的自然土壤(森林和灌丛)和农业利用土壤(稻田、旱地和茶园)进行了实验室培养,研究土地利用对硝化作用的影响。结果表明,由于土壤呈酸性(pH4.2~6.3,平均为4.9),供试土壤的硝化作用很弱甚至缺失。当无外加铵态氮时,土壤的硝化速率与有机氮矿化速率呈显著的线性关系(p<0.01),而与土壤pH无关;当外加铵态氮使基质饱和时,硝化速率与土壤pH显著相关(p<0.01)。农业利用显著提高土壤的硝化作用能力,绝大部分自然土壤(78%)的净硝化速率小于净矿化速率,无机氮以铵态氮为主,而绝大部分农业利用土壤(74%)的净硝化速率大于净矿化速率。农业利用通过提高土壤pH、氮肥施用刺激硝化作用及改善土壤磷素供应状况等途径促进土壤的硝化作用。农业利用土壤硝化作用能力的提高增加了氮肥以硝态氮形态淋失的风险。  相似文献   

4.
In Vietnam as much as half of the total land area is already degraded by soil erosion and nutrient depletion. In particular, degradation due to deforestation is increasingly affecting mountainous areas in north-western Vietnam. The necessity to safeguard the farmers' livelihoods requires sustainable resource management, which firstly requires a qualitative and quantitative evaluation of resources. The objectives of the present study were to (1) identify the dominant soil types and their vulnerability using elicitation of local soil knowledge, (2) characterise the physical and chemical properties of the soils and (3) link them to the relief position and land use in order to (4) initiate sustainable soil use based on recommendations deduced from objectives (1) to (3). These objectives were achieved also by the elicitation of local knowledge. The final aim of the study was to initiate sustainable soil use based on recommendations for sustainable land use scenarios. The Chieng Khoi commune in Son La province of northern Vietnam was chosen as representative for other erosion-prone Southeast Asian sloping areas. In a participatory approach, combining local and scientific knowledge, sixteen sites were selected, representative for distinct relief positions, parent material (sand stone and silt stone), land use history, and erosion hazard. Chemical (e.g. content of organic matter, nitrogen, cation exchange capacity, base saturation, and plant available phosphorous) and physical properties (e.g. air capacity, plant available water) were used to estimate soil fertility. The predominant reference soil groups in the study area are Alisols and Luvisols, with a high diversity in respect to soil fertility. These soils are locally named ‘red soil’ and ‘black soil’, respectively. Although the main physical processes are erosion and selective sedimentation, farmers tend to underestimate their impact and causes, whereas soil quality was well-evaluated. Soils with high fertility were found on less eroded upper parts of hills and at sites, where agricultural use started only recently. Once degraded by cultivation practices, soils derived from sandstone did not recover even after more than 50 years of fallow. As a result of unsustainable land use, soils on middle and lower slopes are often affected by severe soil erosion, whereas foot slope soils suffer from accumulation of eroded infertile subsoil material as well as stagnic conditions. This study showed that unsustainable land use at upslope landscape positions has a severe impact on downslope areas. The elicitation of local knowledge facilitated the identification of such hot spots, allowing the implementation of spatially targeted conservation measures.  相似文献   

5.
A plot experiment was conducted to understand the response of the soil bacterial community to manure application rates and the relationship between the composition of bacterial community and soil chemical properties. The experiment involved gradients of manure combined with chemical fertilizer in red soils from granite, red sandstone and red clay between 2013 and 2015. The soil bacterial community composition was significantly affected by different manure rates. The relative abundances of Burkholderiaceae, Micrococcaceae and Streptomycetaceae were higher at low manure rates (1.75 to 3.5 t·ha?1·yr.?1), whereas the relative abundance of Xanthomonadaceae was higher at high manure rates (7 to 28 t·ha?1·yr.?1). Manure application increased the bacterial abundance but decreased the diversity when its rates were higher than 7, 14 and 14 t·ha?1·yr.?1 in soils from granite, red sandstone and red clay, respectively. Redundancy analysis revealed that soils from different parent materials had different bacterial communities with soil pH and available phosphorus (AP) being determinant factors. The peanut yields exhibited significantly positive correlations with the bacterial diversity in soil, implying the importance of bacterial diversity for soil productivity. Soil AP was correlated with bacterial diversity by parabolic equations and probably AP may be an indicator of declining bacterial diversity at high manure rates. The critical value were 39.71, 65.75 and 90.16 mg·kg?1 in soils from granite, red sandstone and red clay, respectively. This study suggests the importance of maintaining soil bacterial diversity under moderate and balanced applications of manure.  相似文献   

6.
The high Andes region of south Ecuador is characterised by intense land use changes. These changes affect particularly the páramo, which is a collection of high altitudinal grassland ecosystems. In this region, the interaction between airborne volcanic ashes and the cold and wet climate results in very typical soils, with an elevated organic C contents. The physical soil properties are closely related to the high and reliable base flow in rivers descending from the páramo, which makes them important for the socio-economic development of the region. In this study, we analyse the regional variability of the soils in the south Ecuadorian rio Paute basin. In a first part of the study, data from soil profiles along north–south transects are used to determine the soil properties, and to relate the spatial variability of these properties to the major trends in parent material, volcanic ash deposits and climate. The profiles are Histic Andosols and Dystric Histosols devoid of allophane, with very high amounts of organic matter. Significant differences between the western and central mountain range are observed, as well as a general decrease in Andic properties from north to south, coinciding with the decrease in volcanic influence. Finally, the impact of human activities on the soil properties is assessed in a case study in the Machangara valley. Data from 5 profiles, located in an area with natural grass vegetation and a low degree of human impact are compared with 4 profiles in a heavily disturbed, intensively drained cultivated area. Despite the intensity of the land use, very few significant differences are found.  相似文献   

7.
 Soil respiration was measured by closed chamber and gradient methods in soils under forest, sown meadow and crops. Annual total soil respiration determined with the closed chamber method ranged from 180 to 642 g CO2-C m–2 year–1 and from 145 to 382 g CO2-C m–2 year–1 determined with the CO2 profile method. Soil respiration increased in the order: cropland<sown meadow<forest. The C balance calculated as the difference between net primary production (sink) and respiration of heterotrophs (source) suggested an equilibrium between the input and output of C in the cropland, and sequestration of 135 and 387 g CO2-C m–2 year–1 in the forest and meadow, respectively. Received: 1 December 1997  相似文献   

8.
《Applied soil ecology》2007,35(1):35-45
Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for understanding soil ecosystem functioning. In this study, we report the activities of the glycosidases (β-glucosidase, α-galactosidase, and β-glucosaminidase), acid phosphatase, and arylsulfatase, involved in C (C and N for β-glucosaminidase), P, and S cycling, respectively, as affected by soil order and land use within a watershed in north-central Puerto Rico (Caribbean). Representative surface soil (0–15 cm) samples were taken from 84.6% of the total land area (45,067 ha) of the watershed using a completely randomized design. The activity of α-galactosidase was greater in soils classified as Oxisols than in soils classified as Ultisols and Inceptisols, and it was not affected by land use. The activity of β-glucosidase was greater in Oxisols compared to the Inceptisols and Ultisols, and it showed this response according to land use: pasture > forest > agriculture. The activity of β-glucosaminidase was higher in Oxisols than the other soil orders, and it was higher under pasture compared to forest and agriculture. Acid phosphatase and arylsulfatase activities were greater in Oxisols and Ultisols than in Inceptisols, and they decreased in this order due to land use: forest = pasture > agriculture. As a group, β-glucosaminidase, β-glucosidase, and acid phosphatase activities separated the sites under forest and pasture from those under agriculture in a three-dimensional plot. Thus, enzyme activities in Inceptisols under agriculture could be increased to levels comparable to other soil orders with conservative practices similar to those under pasture and secondary forest growth. Our findings demonstrate that within this watershed, acid and low fertility soils such as Oxisols and Ultisols have in general higher enzyme activities than less weathered tropical soils of the order Inceptisols, probably due to their higher organic matter content and finer texture; and that the activities of these enzymes respond to management with agricultural practices decreasing key soil biochemical reactions of soil functioning.  相似文献   

9.
The mobilization of organic carbon (C) by water erosion could impact the terrestrial C budget, but the magnitude and direction of that impact remain uncertain due to a lack of data regarding the fates and quality of eroded C. A study was conducted to monitor total organic C and mineralizable C (MinC) in eroded materials from watersheds under no till (NT), chisel till (CT), disk till low input (DT-LI), pasture and forest. The DT-LI treatment relies on manure application and legume cover crops to partly supply the N needed when corn is grown, and on cultivation to reduce the use of herbicides. Each watershed was instrumented with a flume and a Coshocton wheel sampler for runoff measurement. Carbon dioxide (CO2) evolved during incubation (115 days) of runoff samples was fitted to a first-order decomposition model to derive MinC. Annual soil (6.2 Mg ha−1) and organic C (113.8 kg C ha−1) losses were twice as much in the DT-LI than in the other watersheds (<2.7 Mg soil ha−1, <60 kg C ha−1). More than management practices, rainfall class (based on intensity and energy) was a better controller of sediment C concentration and biodegradability. Sediment collected during the low-intensity (fall/winter) storms contained more organic C (37 g C kg−1) and MinC (30–40% of sediment C) than materials displaced during the high-intensity summer storms (22.1 g C kg−1 and 13%, respectively). These results suggest a more selective detachment and sorting of labile C fractions during low-intensity storms. However, despite the control of low-intensity storm on sediment C concentration and quality, increased soil loss with high-energy rainfall suggests that a few infrequent but high-energy storms could determine the overall impact of erosional events on terrestrial C cycling.  相似文献   

10.
利用土20年长期肥料定位试验研究了不同土地利用方式和施肥对土壤有机碳和无机碳储量变化的影响。试验包括休闲(Fallow, FL)、 撂荒(Setaside, SL)、 不施肥(CK)、 单施氮(N)、 氮钾(NK)、 磷钾(PK)、 氮磷(NP)、 氮磷钾(NPK)、 氮磷钾配合秸秆还田(SNPK)、 氮磷钾配合低量有机肥(M1NPK)和氮磷钾配合高量有机肥(M2NPK)11个处理。结果表明,CK和 FL 处理等质量耕层土壤有机碳储量仍维持在试验前水平,NP和 SL 处理显著提高了耕层土壤有机碳储量,年均增加分别达到 347 kg/hm2 和518 kg/hm2, 此4个处理等质量耕层土壤无机碳储量均较试验开始前(Initial soil, IniS)显著下降,尤其是NP处理显著低于其它3个处理。与IniS和CK相比,除NK处理外的所有施肥处理均显著地提高了等质量耕层土壤有机碳储量,其大小顺序为 M2NPKM1NPKSNPKNPKNPPKN,最大年均增加量为M2NPK 944 kg/hm2,最小为N 127 kg/hm2。施肥处理除PK和M2NPK处理外,其它处理等质量耕层土壤无机碳储量均较试验前明显降低,可能是由于土壤酸化所致。PK和M2NPK处理无机碳储量能够维持不下降,表明土壤无机碳和有机碳在适合条件下可能有某种关系。试验结果还显示,长期试验20年除M1NPK和M2NPK处理外,其它处理耕层土壤容重均明显高于试验开始前,表明等质量土壤碳储量与等深度碳储量相比可以更好地反映土壤碳的变化。  相似文献   

11.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Soil phosphorus (P) management requires a more targeted and soil‐specific approach than is currently applied for agronomic recommendations and environmental evaluation. Phosphorus buffering capacities control the supply of P in the soil solution and were measured across Irish soils with contrasting parent material and chemical properties. Langmuir sorption buffer capacities (MBCs) and binding energies (b) were strongly correlated with soil pH and extractable aluminium (Al). A broken‐line regression fitted to the relationship between MBC and Al derived a change‐point value for Al above which MBC increased linearly. Soils above the change point were predominantly acidic to neutral with non‐calcareous parent material, with larger buffering capacities and binding energies than calcareous soils. Ratios of Mehlich3‐Al and P (Al:P) were used to relate buffering capacity to supply potential in non‐calcareous soils. Large ratios of Al:P were associated with poor P availability, characteristic of strongly P‐fixing soils. Threshold values of iron‐oxide paper strip P (FeO‐P) and Morgan's P revealed Al:P ratios where soils began to supply P in available form. The change‐point for Morgan's P fell within the current target index for P availability; however, the confidence interval was more compatible with previous agronomic P indices used in Ireland. Relationships between Morgan's P and measures of extractable P, M3‐P and Olsen P, deviated in calcareous soils at large soil P contents, indicative of P precipitation processes dominating in these soils. Identifying differences in soil P buffering capacity at the laboratory scale would improve agronomic and environmental assessment at field and catchment scales.  相似文献   

13.
中国亚热带地区土地利用和磷释放的数量关系   总被引:10,自引:0,他引:10  
The increase of phosphorus concentration is a crucial factor causing the eutrophication of water body.while land use has an important impact on agricultural non-point sources(NPS) phosphorus discharge,Seven sites controlling the water in four sub-watersheds and the main exit of the Meicun Watershed of Xuancheng County,Anhui Provinec,were investigated by dynamic monitoring of stream water and nutrient discharge,integrating interpretation of areial image and GIS analysis to find out how the land use affects phosphorus loss with stream water in typical agriculture-forest watershed in subtropica China.These monitored sites are different in structure of typical agriculture-forest watershed in subtropical China.These monitored sitess are different in structure of land use,Phosphorus concentration of the stream water was analyzed every week and at the next day of rainfall,The velocity of flow was measured by kinemometer to calculate the runoff flux and phosphorus discharge.The results showed that the runoff flux and the discharges of dissolved phosphorus(DP),particle-associated phosphorus(PAP) and total phosphorus(TP) had significant exponential relationships with the area percentages of forest,pond and paddy field.There existed a significant exponential relationships with the area percentages of forest,pond and paddy field.There existed a significant linear relationship between the TP and PAP concentrations in stream water and the area percentages of forest,pond and paddy field,and the discharge of PAP was also significantly linearly correlated with the discharge of suspended soil particles.There was a logarithmic linear relationship between DP and PAP discharges,The study indicated that the adjustment of land used patterns and construction of ecologically sound aldnscape would be an important measure to reduce the runoff discharge of phosphorus,The results would be very useful in building the best management practices(BMPs) of agricultural watershed in subtropics.  相似文献   

14.
Impacts of management and land use on soil bacterial diversity have not been well documented. Here we present the application of the bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) diversity method, which will promote studies in soil microbiomes. Using this modified FLX pyrosequencing approach we evaluated bacterial diversity of a soil (Pullman soil; fine, mixed, thermic Torrertic Paleustolls) with 38% clay and 34% sand (0–5 cm) under four systems. Two non-disturbed grass systems were evaluated including a pasture monoculture (Bothriochloa bladhii (Retz) S.T. Blake) [P] and a diverse mixture of grasses in the Conservation Reserve Program (CRP). Two agricultural systems were evaluated including a cotton (Gossypium hirsutum L.) -winter wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation [Ct–W–Cr] and the typical practice of the region, which is continuous monoculture cotton (Ct–Ct). Differences due to land use and management were observed in soil microbial biomass C (CRP > P = Ct–W–Cr > Ct–Ct). Using three estimators of diversity, the maximum number of unique sequences operational taxonomic units (OTU; roughly corresponding to the species level) never exceeded 4500 in these soils at the 3% dissimilarity level. The following trend was found using the most common estimators of bacterial diversity: Ct–W–Cr > P = CRP > Ct–Ct. Predominant phyla in this soil were Actinobacteria, Bacteriodetes and Fermicutes. Bacteriodetes were more predominant in soil under agricultural systems (Ct–W–Cr and Ct–Ct) compared to the same soil under non-disturbed grass systems (P and CRP). The opposite trend was found for the Actinobacteria, which were more predominant under non-disturbed grass systems (P and CRP). Higher G? bacteria and lower G+ bacteria were found under Ct–W–Cr rotation and highest abundance of actinomycetes under CRP. The bTEFAP technique proved to be a powerful method to characterize the bacterial diversity of the soil studied under different management and land use in terms not only on the presence or absence, but also in terms of distribution.  相似文献   

15.
毛乌素沙地是典型的生态脆弱区,近年来针对其在榆林境内的沙地整治利用取得显著成效,也对土壤环境产生了深刻影响。为了探究沙地不同整治利用方式对土壤有机质的影响,该研究选取榆林市显性沙地,利用多光谱遥感影像及相关光谱指数,结合沙地土地利用变化特征,通过XGBoost机器学习方法,反演1990-2020年土壤有机质含量;分析不同土地类型下土壤有机质含量变化,通过半变异函数揭示了其空间变异性,厘清人为因素和自然环境的影响程度。结果表明,30 a间榆林5 460 km2沙地中超过半数得到整治和利用,沙地-草地是最主要的地类转变方式,建设用地面积增长最迅速;沙区土壤有机质含量上升,但整体呈现先增加后降低的趋势,有机质均值由0.34%增长至0.79%,近10年降低至0.51%;榆林沙区土壤有机质具有较强的空间自相关性。起初,人为利用对其有积极作用,但随着沙地的利用强度增大,对土壤有机质产生负向作用,进而致使其含量下降,面临土地退化危机。建议加强退化林草的修复改良,放缓建设用地开发力度,研究以期为沙地整治提供理论和实践借鉴意义,保护榆林沙地土壤环境安全。  相似文献   

16.
In the middle terrace area of south Sumatra, Indonesia, where red acid soils poor in crop productivity are widely distributed, the effects of cropping pattern and cultivation techniques on physico-chemical properties of soil were investigated. Five patterns for cassava cropping, including monoculture, a rotation with annual food crops, and three intercroppings with differences in the combination with annual crops and in the planting density, were evaluated in Experiment I. In Experiment II, eight plots composed of the combinations of two tillage methods (no-tillage or conventional tillage), the presence or absence of surface mulch from crop residues, and two rates of chemical fertilizers were established for a maize–soybean–cowpea sequential cropping pattern. At the end of 3 years, there was no difference in total C and total N concentrations among the plots in Experiment I irrespective of the mulch treatment using crop residues. Soil organic matter (SOM) concentration was not affected even in the no-tillage plot where the maximum crop residues (20 t ha−1) was given as surface mulch with the increased root residues due to higher rates of fertilizers (Experiment II). In Experiment I, available P concentration was highest in an intercropping with higher fertilizer rates and lowest cassava planting density. In Experiment II, an increase in available P was attained by mulching and the higher rate of fertilizers, and a minor positive effect of fertilizer was also observed in exchangeable Mg and K concentrations. Surface mulch resulted in less clay fraction compared with the non-mulch plots in both the experiments, suggesting its effect on the maintenance of soil particle distribution. An additional finding suggested no prominent influence of cassava monoculture on the level of SOM in this area based on the comparison with other major land uses, including secondary forest, rubber plantation, and mixed cultivation of fruits with crops. Nevertheless, the introduction of crop residue mulch and higher rates of fertilizers are recommended for sustaining soil quality and achieving higher crop yields.  相似文献   

17.
Zheng  Xiangzhou  Lin  Cheng  Guo  Baoling  Yu  Juhua  Ding  Hong  Peng  Shaoyun  Zhang  Jinbo  Ireland  Eric  Chen  Deli  Müller  Christoph  Zhang  Yushu 《Journal of Soils and Sediments》2020,20(4):1897-1905
Purpose

Nitrogen (N) is an important nutrient for re-vegetation during ecosystem restoration, but the effects of cover restoration on soil N transformations are not fully understood. This study was conducted to investigate N transformations in soils with different cover restoration ages in Eastern China.

Materials and methods

Soil samples were collected from four degraded and subsequently restored lands with restoration ages of 7, 17, 23, and 35 years along with an adjacent control of degraded land. A 15N tracing technique was used to quantify gross N transformation rates.

Results and discussion

Compared with degraded land, soil organic carbon (SOC) and total N (TN) increased by 1.60–3.97 and 2.49–5.36 times in restoration land. Cover restoration increased ammonium and nitrate immobilization, and dissimilatory nitrate reduction to ammonium (DNRA) by 0.56–0.96, 0.34–2.10, and 0.79–3.45 times, respectively, indicating that restoration was beneficial for N retention. There were positive correlations between SOC content and ammonium and nitrate immobilization and DNRA, indicating that the increase in soil N retention capacity may be ascribed to increasing SOC concentrations. The stimulating effect of SOC on ammonium immobilization was greater than its effect on organic N mineralization, so while SOC and TN increased, inorganic N supply did not increase. Autotrophic and heterotrophic nitrification increased with increasing SOC and TN concentrations. Notably, heterotrophic nitrification was an important source of NO3??N production, accounting for 47–67% of NO3??N production among all restoration ages.

Conclusions

The capacity of N retention was improved by cover restoration, leading to an increase in soil organic carbon and total N over time, but inorganic N supply capacity did not change with cover restoration age.

  相似文献   

18.
长期施肥对中国亚热带水稻土土壤稳定性和机械属性的影响   总被引:12,自引:0,他引:12  
LI Jiang-Tao  ZHANG Bin 《土壤圈》2007,17(5):568-579
Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.  相似文献   

19.
我国典型农田长期施肥的氮肥真实利用率及其演变特征   总被引:2,自引:0,他引:2  
【目的】传统氮肥利用率是指当季作物吸收肥料氮占施用的肥料氮的比例,没有反映肥料氮在土壤中的残留及其利用情况。利用长期定位试验能反映土壤氮库变化的优势,分析不同施肥条件下作物的传统氮肥利用率(氮肥表观利用率)和真实利用率,揭示我国典型区域氮肥的真实利用和损失状况。【方法】本研究选用了两种旱地土壤(北京褐潮土和郑州轻壤质潮土)和两种水旱轮作土壤(重庆紫色土和武汉黄棕壤)上的长期定位试验(15~31年)在4种施肥处理,即不施肥(CK)、单施化肥氮(N)、化肥氮磷钾配施(NPK)和化肥氮磷钾与有机肥配施(NPKM)处理取样分析比较作物吸氮量、土壤全氮演变、年均氮肥表观利用率与真实利用率,并计算了不同施肥条件下的氮肥表观损失率与真实损失率。【结果】3个施肥处理,褐潮土、轻壤质潮土、紫色土和黄棕壤上的平均氮肥真实利用率为47.6%、56.6%、57.0%和56.3%,显著高于氮肥表观利用率(33.6%、42.1%、37.8%和25.8%)。这是因为NPK和NPKM处理的肥料氮在土壤氮库中的每年速率积累为N 6.26~37.3 mg/kg的。氮肥真实利用率在褐潮土和轻壤质潮土上比表观利用率高10.9%~17.5%在紫色土和黄棕壤上高18.6%~32.9%,说明传统氮肥利用率更为低估水田轮作下作物的真实利用率。NPK和NPKM处理,褐潮土和轻壤质潮土的氮肥表观利用率以每年1.76~2.49个百分点的速率显著上升,氮肥真实利用率以每年1.50~2.29个百分点的速率显著上升,说明华北旱地上化肥均衡施用和化肥与有机肥配施可增加氮肥的利用率,减少氮肥的损失。黄棕壤上的氮肥真实利用率在显著增加而表观利用率没有显著增加,是由于NPK和NPKM处理的黄棕壤全氮含量以每年N17.5~37.3 mg/kg的速率在显著增加说明化肥均衡施用和化肥与有机肥配施可增加黄壤的氮库库容。【结论】目前我国农田氮肥利用率普遍被低估约20%尤其是在土壤全氮含量变化较大的水旱轮作农田。  相似文献   

20.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号