首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to marker dominant nuclear gene Ms2 with a blue grain, a 4E disomic addition line 'xiaoyanlanli'(2n=44, AABBDD+4EII) as the male parent to pollinate with male-sterile plants of durum wheat, controlled by a dominant nuclear gene Ms2, and a durum wheat line 89-2343 with Ms2 and blue seed marker on the same addition chromosome was developed. The genotype 89-2343 was crossed and backcrossed with a common wheat genotype 7739-3 to produce male fertile plants with blue seeds (MFP-BS). To combine the blue seed marker, dwarf male-sterile plants carrying RhtlO and Ms2 were fertilized by pollen from selected MFP-BS. At last, the combination of blue seed marker, Ms2 and RhtlO was successfully produced. The segregation ratio of male sterility, seed color as well as chromosome configurations of the combinations suggested that the blue seed marker, Ms2 and RhtlO were located on the same chromosome. Cytological analysis indicated that the male sterile wheat line with a blue seed marker was 43 in chromosome number, with an additional chromosome. The transmission rate for blue seed male-sterile plants was 22.1% in common. In addition, the potential value for blue marker sterile lines in wheat breeding and hybrid production is discussed.  相似文献   

2.
Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f.sp.tritici prevalent in China.To elucidate the genetic basis of the resistance,the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169,seedlings of the parents and F 2 progeny were tested with six prevalent pathotypes,including CYR29,CYR31,CYR32-6,CYR33,Sun11-4,and Sun11-11,F 1 plants and F 3 lines were also inoculated with Sun11-11 to confirm the result further.The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes,independently,one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31,two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4,two independently dominant genes or three dominant genes(two of the genes show cumulative effect) conferring resistance to CYR33,a single dominant gene for resistance to Sun11-11.Resistance gene analog polymorphism(RGAP) and simple-sequence repeat(SSR) techniques were used to identify molecular markers linked to the single dominant gene(temporarily designated as YrV3) for resistance to Sun11-11.A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F 2 plants and their derived F 2:3 lines tested with Sun11-11 in the greenhouse.Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B,and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B.The linkage map spanned a genetic distance of 25.0 cM,the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM,respectively.Based on the linkage map,it concluded that the resistance gene YrV3 was located on chromosome arm 1BL.Given chromosomal location,the reaction patterns and pedigree analysis,YrV3 should be a novel gene for resistance to stripe rust in wheat.These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.  相似文献   

3.
Wheat (Triticum aestivum L.) line Lankao 90(6) carries a recessive powdery mildew resistance gene temporarily named PmLK906 on chromosome 2AL. Near PmLK906 there is another known powdery mildew resistance gene locus Pm4. To track the two powdery mildew resistance genes in wheat breeding program by marker assisted selection (MAS), a linked molecular marker was developed in this study. Wheat gene chip hybridization combined with bulked segregant analysis (BSA) was used to develop an sequence-tagged sites (STS) marker for PmLK906 and Pm4. A new 2 125 bp full-length cDNA clone (GenBank accession no. EU082094) similar to csAtPR5 ofAegilops tauschii was isolated from Lankao 90(6) 21-12, and temporarily named TaAetPR5. Specific products could be amplified from cultivars or lines possessing Pm4a, Pm4b and PmLK906 with primers p9-7pl and p9-7p2 derived from TaAetPR5. TaAetPR5 was linked to PmLK906 at a genetic distance of 7.62 cM, and cosegregated with Pm4a. The p9-7p1 and p9-7p2 could be used as an STS marker for these resistance genes in wheat breeding. Because this marker was cosegregated with Pm4a, it can be used in map-based cloning of the alleles at Pm4 locus also.  相似文献   

4.
In order to clarify inheritance mechanism of fertility restoration for cytoplasmic male sterility (CMS) in a new Gossypium barbadense restorer line Hai R which was found in the fertility test crossing of G. hirsutum CMS lines with G. barbadense germplasms. 23 fertility segregation populations of F2 and backcross were used to analyze the inheritance of fertility restoring gene(s) of Hai R. The result showed that Hai R had one major dominant gene (RfB) to control the CMS fertility restoration and this fertility restoration gene functioned at the sporophytic level. The sterile cytoplasm background might not only influence the transmission rate of male gamete but also that of female gamete when the restorer gene was recessive. It could be deduced that this fertility restoration gene might come from G. harknessii cotton, Hai R is of value in the application of cotton interspecific hybrid breeding.  相似文献   

5.
cDNA fragment of fertility gene MS2 from cotton was cloned by RT-PCR approach, it was highly homologous with relevant genes of Brassica napus and Arabidopsis thaliana. According to the principles of constructing RNAi vector, sense and antisense fragments of MS2 gene carrying restriction endonuclease recognition sites were amplified via PCR technique, ligated with the first intron of upland cotton chinase gene, then inserted into artificially modified plant expression vector pBI121, yielding RNAi vector pBGP12MSIn. The results showed that RNAi vector pBGP12MSIn harboring MS2 gene driven by anther specific promoter BGP was successfully constructed. Our results laid a foundation for studying the function of this gene and genetic transformation of plant male sterile lines.  相似文献   

6.
A segregating population with 410 F 2 individuals from the cross MERCIA(Rht-B1a) ×Dwarf 123 was made to identify a new major dwarfing gene carrying by novel wheat germplasm Dwarf 123.Combination of bulk segerant analysis method was used.A total of 145 SSR markers were tested for polymorphisms among parental lines and DNA bulks of F 2 population.Out of 145 primer pairs only three markers revealed corresponding polymorphism among parental lines and F 2 DNA bulks.The marker Barc20 was close to the dwarfing gene with a genetic distance of 1.8 cM,and markers Gwm513 and Gwm495 were linked to the gene with genetic distance of 6.7 and 13 cM,respectively.Linkage analysis mapped the dwarfing gene to the long arm of chromosome 4B with the order of Barc20-dwarfing gene-Gwm513-Gwm495.The Comparision between the new gene and the known Rht-B1 alleles showed that dwarfing gene Rht-Ai123 was different from the others.The identification of the new dwarfing gene and its linked markers will greatly facilitate its utilization in wheat high yield breeding for reducing plant height.  相似文献   

7.
Stripe rust is one of the most important diseases of wheat worldwide. Inheritance of stripe rust resistance and mapping of resistance gene with simple sequence repeat (SSR) markers are studied to formulate efficient strategies for breeding cultivars resistant to stripe rust. Zhongliang 88375, a common wheat line, is highly resistant to all three rusts of wheat in China. The gene conferring rust disease was deduced originating from Elytrigia intermedium. Genetic analysis of Zhongliang 88375 indicated that the resistance to PST race CYR31 was controlled by a single dominant gene, temporarily designated as Yr88375. To molecular map Yr88375, a F2 segregating population consisting of 163 individuals was constructed on the basis of the hybridization between Zhongliang 88375 and a susceptible wheat line Mingxian 169; 320 SSR primer pairs were used for analyzing the genetic linkage relation. Six SSR markers, Xgwm335, Xwmc289, Xwmc810, Xgdmll6, Xbarc59, and Xwmc783, are linked to Yr88375 as they were all located on chromosome 5BL Yr88375 was also located on that chromosome arm, closely linked to Xgdmll6 and Xwmc810 with genetic distances of 3.1 and 3.9 cM, respectively. The furthest marker Xwmc783 was 13.5 cM to Yr88375. Hence, pedigree analysis of Zhongliang 88375 combined with SSR markers supports the conclusion that the highly resistance gene Yr88375 derived from Elytrigia intermedium is a novel gene for resistance to stripe rust in wheat. It could play an important role in wheat breeding programs for stripe rust resistance.  相似文献   

8.
To understand the resistance inheritance basis of space-induced rice lines to blast, and to probe mutants' genomic DNA polymorphism compared with ground control by microsatellite markers, three space-induced lines were crossed with a highly susceptible variety LTH, and their F1 and F2 populations were inoculated by two representative blast isolates with broad pathogenicity to analyze their resistance inheritance basis. Meanwhile three mutant lines and the ground control were analyzed by 225 rice SSR (simple sequence repeat) primer pairs selected throughout the 12 chromosomes of whole rice genome, to scan the mutagenesis in genome of the mutant lines. The results indicated the blast-resistant genes harbored in these mutant lines were dominant. It was demonstrated that the resistance of mutant H1 to isolate GD0193 and GD3286 was controlled by a single gene, respectively; while mutants H2 and H3 were controlled by two pairs of major genes against isolate GD3286 and H2 showed complicated genetic mechanism to isolate GD0193. H3's resistance to isolate GD0193 was verified to be controlled by a single gene. According to the results of SSR analysis, three mutant lines showed different mutant rates as compared with the ground control, and the mutant rates also varied. Resistance genes can be induced from rice by space mutation, and different genomic variations were detected in blast-resistant lines.  相似文献   

9.
A novel insecticidal gene crylAh was cloned from Bacillus thuringiensis isolate BT8 previously for plant genetic engineering improvement. Truncated active CrylAh toxin has a toxicity level similar to that of the full-length CrylAh toxin. In this study, plant expression vector pMhGM harboring truncated crylAh gene was transformed into maize (Zea mays L.) immature embryos by Agrobacterium tumefaciens-mediated transformation at which maize alcohol dehydrogenase matrix attachment regions (madMARs) were incorporated on both sides of the gene expression cassette to improve gene expression. A total of 23 PCR positive events were obtained with a transformation efficiency of 5% around. Bioassay results showed that events 1-4 and 1-5 exhibited enhanced resistance to the Asian corn borer (Ostriniafurnacalis). These two events were further confirmed by molecular analysis. Southern blot suggested that a single copy of the crylAh gene was successfully integrated into the maize genome. Western blot and ELISA showed that the foreign gene crylAh was expressed stably at high level in maize and could be inherited stably over generations. The results of a bioassay of T l-T4 transgenic maize plants indicated that the transgenic plants were highly toxic to the Asian corn borer and their resistance could be inherited stably from generation to generation. Thus, events 1-4 and 1-5 are good candidates for the breeding of insect-resistant maize.  相似文献   

10.
In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination. To establish an expression system for alien genes in rice chloroplast, the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study. Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique, and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator ofpsbA gene 3 sequence. Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct. Subsequently, the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained. Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome. Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome. Thus, the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome, but PPT-resistant trait for rice plants as well. It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.  相似文献   

11.
Maize (Zea mays L.), one of main crops in the world, is easily susceptible to Aspergillusflavus (Link: fr) infection, resulting huge loses worldwide. Breeding for A. flavus resistance has been proved an efficient way to solve the problem of aflatoxin contamination. Genetic analysis of the sources of resistance to A.flavus in maize is necessary for this purpose. The complete diallel crosses of 6 inbred lines with different resistance to A.flavus infection were implemented. Inoculation categorical data of each cross were analyzed with the additive-dominant and additive-dominant-epitasis genetic models. Results indicated some crosses fitted the 2 major genes with additive-dominant-epitasis genetic model. Others fitted the major gene and polygene mixed model. Moreover, the additive, dominant, and epitasis effects varied in crosses. The A.flavus resistance was controlled by both major gene and polygene.  相似文献   

12.
Leaves are the main organs of photosynthesis in green plants. Leaf area plays a vital role in dry matter accumulation and grain yield in maize(Zea mays L.). Thus,investigating the genetic basis of leaf area will aid efforts to breed maize with high yield. In this study,a total of 150F_7 recombinant inbred lines(RILs)derived from a cross between the maize lines Xu 178 and K12 were used to evaluate three ear-leaves area(TELA)under multi-environments. Inclusive composite interval mapping(ICIM)was used to identify quantitative trait loci(QTLs)for TELA under a single environment and estimated breeding value(EBV). A total of eight QTLs were detected under a single environmental condition,and four QTLs were identified for EBV which also can be detected in single environment. This indicated that the EBV-detected QTLs have high genetic stability. A major QTL(qTELA_2-9)located in chromosome bin 2.04/2.05 could be detected in four environments and has a high phenotypic contribution rate(ranging from 10.79 to 16.51%)that making it a good target for molecular breeding. In addition,joint analysis was used to reveal the genetic basis of leaf area in six environments. In total,six QTL×environment interactions and nine epistatic interactions were identified. Our results reveal that the genetic basis of the leaf area is not only mainly determined by additive effects,but also affected by epistatic effects environmental interaction effects.  相似文献   

13.
Cre/LoxP site-specified recombination system is mainly used for excision,inversion and integration of target gene.Therefore,this system can be used for plant marker free genetic transformation,site-specific transgene expression and so on.However,the application of this system was limited due to its low expression and excision efficiency.In this study,an intron,which can enhance gene expression in plants,was inserted into Cre by using PCR method.And a modified Cre gene,named Crein,was obtained.This gene was ...  相似文献   

14.
This study was carried out the animal production department, genetic engineering lab, college of agriculture, (UoB), Iraq. The aim of this study was to use the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) as a fast, efficient and low cost method to detect the genetic variants of kappa-casein gene (k-CN) in Iraqi buffalo using three different primers specific for bovine k-CN to amplify the gene segment, followed by digestion using restriction enzyme (Hind III) for genotyping. DNA from 50 Iraqi buffaloes was extracted by phenol chloroform method. PCR was carried out in a final reaction volume of 25 μL and the reaction mixture was subjected to standard PCR protocol. The results of this work show that among the examined 50 Iraqi Buffalo were homozygous for the K-CN and genotyped as BB for all three primers but gave different bands. Thus PCR-RFLP using Hind III revealed all the samples to be monomorphic for this locus. The restriction digestion analysis of 397 bp PCR product of k-CN indicates the presence of two fragments of 154 bp and 225 bp for BB-genotype. A 437 bp fragment of the bovine genomic K-CN gene was amplified. One Hind III restriction site is found in position 346 of the amplified fragment of allele k-CN B, yielded 91 bp and 346 bp. Amplified products from Iraqi buffalo (530), after being digested with Hind III, yielded two separate DNA fragments of different sizes i.e., 160 bp and 370 bp. For the first time completed research such specifications in Iraq, for the first time using molecular biology in genetic identification. Our objectives of this study have been to aid in understanding domestication, Buffalo origin and their history and evolution, to identify genetically unique breeds, to provide an objective basis for conservation decisions and to aid the formulation of breeding plans.  相似文献   

15.
Huahui 1 is an elite transgenic male sterile restorer line of wild rice abortive-type that expresses a Bacillus thuringiensis (Bt) δ-endotoxin and provides effective and economic control oflepidopteran insects. To exploit Huahui 1 to develop a new Bt rice, the insertion site of the Bt gene was determined by thermal asymmetric interlaced PCR (TAIL-PCR). Bt was located in the promoter region ofLOC. Os10g10360, approximately 5.35 Mb from the telomere of the short arm of chromosome 10. For the first time, a Bt cytoplasmic male sterile (CMS) system was developed by introgressing Bt from Huahui 1. The recipient CMS system used consisted of Indonesia paddy rice-type II-32B (maintainer line) and II-32A (male sterile line). Marker-assisted selection was used to increase selection efficiency in the backcrossing program. In BC5F1, the Bt plant 85015-8 was selected for further analyses, as it had the highest SSR marker homozygosity. In addition, the linkage drag of the foreign Bt gene in 85015-8 was minimized to 8.01-11.46 Mb. The foreign Bt gene was then delivered from 85015-8 into II-32A. The resultant Bt II-32A and Bt II-32B lines were both resistant to lepidopteran in field trials, and agronomic traits were not disturbed. The maintainability of II-32B, and the male sterility and general combining ability of II-32A, were not affected by the Bt introgression. This study demonstrates a simple and fast approach to develop Bt hybrid rice.  相似文献   

16.
The analysis was carried out on performance of the resistance gene from Haynaldia villosa accession of the former Soviet Union to different isolates ofBluemerie graminis. Polymorphisms were revealed between 6D/6V substitution line Pm930640 and its pedigree parents using five RAPD markers of OPAN031700, OPAI01700, OPAL03750, OPAD07480 and OPAG 15580 screened out from 120 random 10-mers primers. Three RAPD markers of OPAN03, OPAI01 and OPAL03 were linked with the resistance gene by analysis of F2 population of ChancellorxPm930640. Analysis of 29 wheat lines including part of lines conferring the known genes from Pro1 to Pro20 respectively, lines conferring resistance gene from two H. villosa accessions and the related wheat parents, were analyzed and the results showed that these markers not only linked to the gene resistant to powdery mildew from H. villosa, but also detected different genetic backgrounds. OPAL03750 can be used as the marker to distinguish the different resistant lines from two H. villosa accessions because it was only observed in the materials from H. villosa of the former Soviet Union. RFLP analysis also showed the polymorphisms between two H. villosa accessions and their derived resistant lines.  相似文献   

17.
In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bombardment, barstar gene was transferred into maize inbred line 18-599 (White), which is an antiviral and high quality maize inbred line. By molecular detection of the anther of transgenic maize, two plants transferred with barstar gene were gained in this study, which are two restorer lines. The two plants showed normal male spike, and lively microspores. But the capacity of the two restorer lines should be studied in the future. The aim of this study is to find a new method of reproduction of maize hybrid strain using engineering restorer lines and engineering sterility lines by gene engineering technology.  相似文献   

18.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.  相似文献   

19.
Cytoplasmic male sterility exists widely in most natural populations of welsh onion (Alliumfistulosum L.), which makes it possible to breed out many male sterile lines for heterosis utilization. Unfortunately, the breeding of cytoplasmic male sterility in welsh onion has a little progress due to the limitation of its biological characteristic and traditional selection approach. To study the feasibility and the efficiency of utilizing marker assisted selection for male sterile lines in welsh onion, one SCAR marker, SCS13, and one RAPD marker, S2002400, which could distinguish between N and S cytoplasm in several welsh onion cultivars, were identified. The two markers were then confirmed by Southern blotting, and used to screen the N or S cytoplasm of individual plants in seven welsh onion cultivars in this study. Male sterile and fertile plants were evaluated by aceto-carmine dying. The frequency of N-cytoplasmic plants and maintainer genotype was calculated in the seven open populations of welsh onion. The minimum number of plants needed to identify a maintainer was evaluated to be 95% reliable. Results showed that 20 to 80% decrease of crosses and self-crosses for identifying a maintainer genotype could be achieved by the marker-assisted selection compared with traditional selection method. It was proved that the molecular markers could precisely identify cytoplasmic types individually, performed by one generation of cross and two generations of testcrosses and self-crosses. Finally, several maintainer genotype plants were selected with the help of the two markers in the seven cultivars. The screened markers could assist and accelerate sterile and maintainer lines selection with less labor and cost.  相似文献   

20.
The plant hormone abscisic acid (ABA) regulates many important physiological and developmental processes in plants. The objective of this study was to clone the ABA 8′-hydroxylase gene in common wheat. In the present study, we used the eDNA sequence of barley HvCYP707A1 gene (GenBank accession no. AB239299) as a probe for BLAST search against the common wheat (Triticum aestivum L.) EST database in GenBank. All wheat ESTs sharing high similarity with the reference gene were subjected to contig assembly. Primers were designed based on the constructed contigs to clone the wheat CYP707A1 gene, designated as TaCYP707A1. The genomic DNA sequence of TaCYPTO7A1 gene comprised five exons and four introns, with a size of 2225 bp. The corresponding cDNA sequence of TaCYP707A1 was 1737 bp, containing an open reading frame (ORF) of 1431 bp, a 42-bp 5′-untranslated region (UTR) and a 264-bp 3′UTR, with 94.9% of identical sequences to HvCYP707A1 gene (AB239299). The neighbor joining tree indicated that the deduced amino acid sequences of TaCYP707A1 gene was highly similar to those of barley and rice. The TaCYP707A1 gene was located on chromosome 6BL using a set of Chinese Spring nullisomic-tetrasomic lines and ditelosomic line 6BS. These results will be of high importance in understanding of molecular mechanism of ABA catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号