首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于PCA和PNN的水稻病虫害高光谱识别   总被引:5,自引:6,他引:5  
对水稻病虫害准确、快速的识别是采取病虫害防治措施的基础,同时对灾害评估也具有积极意义。该研究选用在水稻孕穗期时测定的两期受稻干尖线虫病危害的水稻叶片光谱数据和于水稻分蘖期时测定的两期受稻纵卷叶螟危害的水稻叶片光谱数据,通过对水稻叶片的光谱特征分析,选用可见光波段(490~670 nm)和短波红外波段(1 520~1 750 nm),用主成分分析技术(PCA)对上述光谱波段进行压缩,获得主分量光谱,最后结合概率神经网络(PNN)对稻干尖线虫病和稻纵卷叶螟进行识别,结果显示对水稻病虫害的识别精度高达95.65%。研究表明,PCA和PNN相结合,可以实现对多种水稻病虫害进行快速、精确的分类识别。  相似文献   

2.
水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型   总被引:4,自引:0,他引:4  
研究水稻叶片氮素和籽粒蛋白质含量的高光谱快速、无损监测方法,对于水稻营养诊断、籽粒品质监测及氮肥高效利用具有重要意义。本文通过水稻盆栽试验,测定水稻叶片氮素、籽粒蛋白质含量和冠层光谱,采用不同的光谱建模方法来提高氮素、籽粒蛋白质含量的估测精度。先用主成分分析(PCA)方法进行特征波段的提取,再用多元线性回归(MLR)、人工神经网络(ANN)和偏最小二乘回归(PLSR)进行建模。结果表明,水稻叶片氮素和籽粒蛋白质含量与特征光谱存在很好的模型关系,3种模型预测的决定系数(R2p)均在0.847以上,并以PLSR模型的预测效果为最好,可以实现水稻氮素营养和籽粒品质的高光谱估测。  相似文献   

3.
基于冠层高光谱参数的水稻叶片碳氮比监测   总被引:6,自引:1,他引:5  
叶片碳氮比反映了植物碳氮代谢的相对强弱,对诊断和调节植物生长与产量形成具有重要作用。该文基于不同水稻品种和不同施氮水平下2 a的田间试验,系统分析了不同生育时期水稻叶片碳氮比与对应冠层高光谱反射特征的定量关系。结果表明,叶片碳氮比与拔节后不同生育时期冠层原始反射率的相关性趋势一致,与可见光波段(350~742 nm)极显著正相关,与近红外波段(750~1143 nm)极显著负相关。8个参数与2个品种不同生育时期的叶片碳氮比均有较好的相关性。通过比较模型的拟合决定系数(R2)和预测标准误(SE),确定672 nm的归一化吸收深度(ND672)与冠层叶片碳氮比(LCNR)的线性回归方程为水稻冠层叶片碳氮比的最佳监测模型。模型经过不同生育时期数据的交叉测试和独立试验资料的检验,得出对冠层叶片碳氮比的预测精确度范围为0.687~0.986,准确度为0.907~1.126,相对跟均方差为7.07~18.25,表明水稻冠层高光谱特征可以用来定量估测不同栽培条件下叶片碳氮比的变化状况。  相似文献   

4.
基于高光谱的寒地水稻叶片氮素含量预测   总被引:2,自引:2,他引:2  
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。  相似文献   

5.
基于光谱技术的水稻叶片氮素测定仪的开发   总被引:2,自引:0,他引:2  
在理论分析的基础上设计开发了一套基于光谱技术的水稻叶片SPAD值和氮素测定仪。该测定仪主要包括光路部分、调理电路和控制与数据采集器等。光路部分包括光源、检测点以及光电传感器等元器件,主要作用是:控制光源的亮灭、收集透过叶片光线、将光信号转换为电信号;调理电路主要将所得微弱电信号进行电流电压转换以及放大到合适的幅度;控制与数据采集器包括AD转换电路,液晶显示电路和SD卡存储电路。对该测定仪的性能进行了测试,试验分为两步:先建立AD采样电压信号与SPAD值之间的模型,然后建立SPAD值与氮素之间的模型。经过大量的试验测得:传感器转换的电压信号与SPAD值之间存在很高的相关性(R2 =0.956),SPAD值与氮含量建立的模型的决定系数为R2 =0.802,结合以上两种模型得到该仪器的氮素模型的决定系数为R2 =0.766。该仪器适合用于田间水稻叶片氮素含量的快速测量。  相似文献   

6.
基于高光谱的叶片滞尘量估测模型   总被引:1,自引:1,他引:1  
为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730~1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 010 nm波段组成的归一化指数,713、725 nm波段组成的差值指数,749、644 nm波段组成的归一化植被指数为自变量建立的模型估测精度最好,其建模和预测的决定系数分别达到0.734和0.731,预测均方根误差为0.311。该研究为促进高光谱技术在大气降尘监测中的应用提供参考。  相似文献   

7.
通过田间试验,在UV-B增强和施硅条件下,利用ASD便携式手持光谱仪在水稻分蘖期、拔节期、抽穗期和灌浆期选择典型晴天观测冠层光谱曲线,通过计算一阶导数曲线分析光谱的红边参数特征。UV-B辐射设2个水平,即对照(自然光,ambient UV-B,A)和UV-B增强(比自然光增强20%,elevated UV-B,E);施硅设2个水平,即不施硅和施硅(硅酸钠,200kg SiO_2·hm~(-2))。结果表明:UV-B增强下水稻叶面积指数(LAI)和叶绿素含量(SPAD值)降低,而施硅可提高叶面积指数(LAI)和SPAD值,缓解UV-B增强对水稻生长的抑制作用。各处理间水稻冠层光谱的差异主要体现在近红外波段,UV-B增强使水稻近红外波段反射率降低,施硅使近红外波段反射率上升。UV-B增强使水稻光谱红边位置蓝移,施硅使红边位置红移。随着生育期推移,水稻光谱红边位置、红边幅值和红边面积均呈现先增后减的趋势,且在拔节期达最大。  相似文献   

8.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:7,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

9.
周清  周斌  张杨珠  王人潮 《土壤学报》2004,41(6):905-911
以青紫泥 (BlueclayeyPaddysoil,BP)和红黄泥 (RedPaddysoil,RP)为例 ,研究发育于不同母质的水稻土高光谱和SOM含量光谱参数模型的差异性。结果表明 ,发育于河湖沉积物的BP的反射系数总体上高于发育于第四纪红色粘土母质的RP ,在与铁的氧化物有关的吸收波段 ,RP的吸收特性较BP强 ;RP的一阶微分的变化趋势总体上也比BP剧烈 ,特别是与铁的氧化物相关的波段及 2 2 0 0nm处 ;BP与RP的SOM的光谱参数模型所包含光谱波段的个数和位置有较大的差异 ,水稻土SOM含量光谱参数模型具有母质的独特性  相似文献   

10.
精准监测农田土壤含水率(soil moisture content,SMC)有助于提高中国水资源利用率以及农业可持续发展水平,为实现国家农业经济的稳定发展及可持续发展目标打下坚实的基础。为了探索基于无人机遥感数据进行准确、快速的土壤含水率监测的方法,该研究选取新疆阜康绿洲田块为研究区,使用无人机(unmanned aerial vehicle,UAV)高光谱传感器采集田块尺度小麦冠层光谱信息,进行SMC定量估算和制图。对小麦冠层光谱进行savitzky-golay(SG)平滑,利用7种不同的小波基函数(bior4.4、coif4、db4、fk14、haar、rbio3.9、sym4)对光谱信息进行连续小波变换(continuous wavelet transform,CWT)处理,并采用遗传算法(genetic algorithm, GA)对小波系数进行特征提取,最后结合偏最小二乘回归(partial least square regress,PLSR)、支持向量机(support vector machine,SVM)、人工神经网络(artificial neural network,ANN)、随机森林(radom forest,RF)以及极端梯度提升(extreme gradient boosting,XGBoost)估算SMC并实现其空间制图。结果表明:基于GA的特征波段选择方法可有效提高SMC的估算精度。使用全波段小波系数构建模型的精度R2在0.20~0.44之间,而使用特征小波系数的R2为0.25~0.82。与其他小波基函数相比,采用db4特征小波系数的估算精度最优,PLSR、SVM、ANN、RF和XGBoost模型估算SMC的R2分别为0.82、0.72、0.79、0.76和0.45。基于PLSR和ANN最优模型进行SMC空间制图,结果表明基于CWT和机器学习结合模型能够有效估算小田块尺度SMC。该研究基于无人机高光谱数据实现了SMC精确估算,为农田尺度SMC监测提供了有效手段。  相似文献   

11.
基于自然光照反射光谱的温室黄瓜叶片含氮量预测   总被引:6,自引:3,他引:6  
利用便携式光谱辐射仪测量了自然光照条件下温室黄瓜叶片的光谱反射率,并计算了反射率光谱的一次微分光谱。反射率光谱以及一次微分光谱与叶片含氮量的相关分析表明,温室内光谱特性与叶片含氮量相关性最大的敏感波段分别是505~664 nm和685~722 nm。当利用原始光谱进行分析时,通过变量筛选得到了4个敏感波长,分别是568、596、640和664 nm。偏最小二乘回归分析(PLSR)以及归一化颜色指数(NDCI)分析都表明,建模时的相关系数RC>0.800,模型验证时的相关系数RV>0.700。对微分光谱进行的相关分析结果表明,利用单一敏感波长520 nm就可获得理想模型,建模时的相关系数为0.880,模型验证时的相关系数为0.787。对比原始光谱的PLSR模型与一阶微分光谱的一元线性回归模型可以得知,原始光谱以及一阶微分光谱都可用于温室内叶片含氮量的预测,而且一阶微分光谱在一些特殊的波长处具有更高的预测能力,这些模型将成为开发便携式作物长势诊断仪器的技术基础。  相似文献   

12.
基于近红外光谱分析的土壤分层氮素含量预测   总被引:4,自引:7,他引:4  
准确、快速地估测土壤中的氮素含量是推动配方施肥顺利开展的保障。该研究在不同区域随机选取了30个点位,每个点位分别取其表土层(0~30 cm)、心土层(30~48 cm)以及底土层(48~60 cm)3个部位进行取样,利用傅里叶型光谱分析仪MATRIX_I测量了土壤样本在近红外区域的吸收光谱,并使用实验室手段测量了土壤样本的水分及氮素含量。分析了不同层次土壤样本的吸收光谱特性,以及土壤水分、氮素不同层次的变化规律。同时对原始光谱吸收率进行一阶微分处理,而后利用微分光谱与土壤全氮含量进行相关性分析,选取反应土壤全氮含量的敏感波段1 387、1 496、1 738、1 876、2 120以及2 316 nm。利用所得敏感波段与土壤氮素含量分别建立多元线性回归模型,BP神经网络预测模型以及基于遗传算法优化的BP神经网络建模。结果显示,基于遗传算法优化的BP神经网络建模,其决定系数为0.883,均方根误差为0.0278 mg/kg。表土层土壤的预测验证结果决定系数为0.716,均方根误差为0.031 mg/kg;心土层土壤的预测验证结果决定系数为0.801,均方根误差为0.030 mg/kg;底土层土壤的预测验证结果决定系数为0.667,均方根误差为0.033 mg/kg。无论是建模精度还是模型在土壤各个层次的预测精度相比于多元线性回归模型和BP神经网络模型相比都有了显著的提高,说明该方法在土壤全氮含量预测过程中具有明显的优势,可应用于实际生产。  相似文献   

13.
为实现利用水稻叶片光谱指数实时预测稻米蛋白质含量,该研究采集了不同年份中氮素、品种差异下寒地水稻主要生育期(T1拔节期、T2齐穗期、T3结实期)顶部3片叶(L1、L2、L3)的叶片光谱反射率,探究其变化规律以及光谱指数与稻米蛋白质含量的关系,并用P-k、均方根误差(Root Mean Square Error,RMSE)和对称平均绝对百分比误差(Symmetric Mean Absolute Percentage Error,SMAPE)对模型精度进行验证。结果显示:施氮量多则稻米蛋白质含量高,蛋白质含量高的稻米食味值评分低。提高氮肥投入量,叶片反射率在可见光区域内呈降低趋势,而在近红外平台叶片反射率上升。随着生育期的推进,可见光区域内的叶片反射率逐渐上升,叶片反射率在近红外平台表现出先增加后降低的趋势,其变化规律与蛋白质营养转运有着密切联系。对光谱指标和稻米蛋白质含量进行相关分析,T2时期的L2的光谱指数与蛋白质含量的相关性优于其他时期的叶片,其中T2时期L1叶ARI1指标((1/R550)-(1/R700))、L2叶CTR1指标((R695/R420))以及T3时期L3 叶Rg指标(绿光范围510~560 nm内的最大波段反射率)显示出与蛋白质含量良好的拟合关系,指标验证的P-k分别为0.01、0.01、0.03,RMSE分别为0.19、0.11、0.14,SMAPE分别为1.56%、1.24%、1.44%,其中以T2时期L2叶CTR1指标表现最优,蛋白质含量拟合方程R2为0.75。综上,借助CTR1指标能够实现快捷、无损和实时预测稻米蛋白质含量的目的,达到按质收获以及品质实时监测的要求,促进优质寒地水稻的可持续发展。  相似文献   

14.
刚收割的高水分稻谷中夹杂较多碎禾叶、禾秆等纤维性杂质,进入烘干机之前必须进行清理。针对国内外对高水分稻谷清理技术研究很少和现有稻谷清理设备不适合处理高水分稻谷的现状,设计了稻谷组合清理机。运用生产试验和现场检测的方法,分析处理量与稻谷水分、设备吸风量、筛孔尺寸及分布、筛板倾角及分布、振动频率等参数之间的联系与相互作用。试验表明:当稻谷含水率高于20%时,组合清理机的筛孔尺寸按上层50×50、中层30×30、下层15×15分布,筛板倾角按上层21°、中层17°、下层13°布置,并且穿过筛孔的实际风速为稻谷悬浮速度的1.1~1.2倍时,处理量较大,清理效果较好。  相似文献   

15.
为寻求有效的水稻生物量估算方法,尝试开发了微波冠层散射模型。将实测的水稻结构参数作为输入变量,运行微波冠层散射的改进模型来模拟水稻冠层后向散射系数,结合遗传算法优化工具,从星载微波雷达遥感ALOS/PALSAR数据反演水稻的结构参数,进而对水稻生物量进行了空间制图。结果显示,模拟的水稻冠层后向散射系数误差在1 dB以内,估算的水稻生物量的误差小于200 g/m2。表明利用微波遥感机理模型反演水稻结构参数和估算水稻生物量具有应用潜力。  相似文献   

16.
控制灌溉水稻叶片水平的水分利用效率试验研究   总被引:9,自引:2,他引:9  
根据现场试验资料,分析了晚稻叶片水平的水分利用效率的日变化与全生育期变化,叶片的水分利用效率与气孔导度及外界影响因子包括光合有效辐射、土壤水分、叶气温差等的相互关系。结果表明:控制灌溉水稻叶片的水分利用效率在较高土壤水分时与对照处理差别不明显,适度土壤水分调控可以获得较高的水分利用效率;全生育期水稻叶片的水分利用效率随土壤水分变化而波动,过高过低的土壤水分均不利于水分利用效率的提高;叶片的光合速率、蒸腾速率与水分利用效率均随气孔导度的增加表现出先增后减的变化规律。水稻叶片的水分利用效率影响因素分析显示:水分利用效率随叶气温差、二氧化碳浓度和空气湿度的增加而增加;有利于获得较高水分利用效率的气孔导度、光合有效辐射、空气温度和土壤水分范围分别是200~350 μmol·m-2·s-1、400~900 μmol·m-2·s-1、28~34℃和85%~90%的土壤饱和含水率。  相似文献   

17.
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法。分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量。研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱。针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型。对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优。结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力。  相似文献   

18.
基于分层多端元混合像元分解的水稻面积信息提取   总被引:6,自引:2,他引:4  
为了解决中低分辨率遥感影像混合像元问题以提高水稻种植信息的提取精度,该文提出了一种基于层次分类与多端元混合像元分解相结合提取水稻面积信息的方法(stratified multiple endmember spectral mixture analysis,SMESMA)。层次分类有效降低了地物复杂度,而多端元混合像元分解通过对每一类地物选取多个端元光谱参与解混,克服了"同物异谱"造成的光谱变异问题,两者结合可有效提高分类精度。以江苏如皋市为研究区,基于HJ-1B CCD影像,分3个层次,当某类地物信息被提取后便将其从影像中去除,进行下一层次分类,各层次均采用多端元混合像元分解方法,综合EARMSE、MASA、CoB等算法以选取最佳端元,实现了如皋市水稻种植面积信息有效提取。结果显示SMESMA法分类精度达85.78%,kappa系数为0.85,基于最大似然分类法(MLC)的分类精度为79.1%,kappa系数为0.78。表明SMESMA是一种适合基于中低分辨率影像进行作物分类和面积提取的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号