首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats and chickens were each given a single oral dose (10 or 100 mg/kg body wt) of 1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl-14C(U)]methanesulfonamide ([14C]perfluidone). Depending on the size of the dose, from 8.4 to 36.2% of the [14C] was eliminated in the urine and from 36.4 to 85.4% was eliminated in the feces within 48 hr after dosing. Less than 1% of the [14C] given to laying hens as [14C]perfluidone was present in the eggs produced during the first 96 hr after dosing. The percentage of the administered [14C] that remained in these animals (body with G.I. tract and contents removed) varied from 0.34 (96 hr after dosing) to 1.68% (48 hr after dosing). 14C-labeled compunds in the urine and feces from the rats and chickens were purified by solvent extraction, column chromatography, and gas-liquid chromatography, and then identified by infrared and mass spectrometry. The parent compound was the major 14C-labeled component in the urine and feces of both animals. 1,1,1-Trifluoro-N-[2-methyl-4-(3-hydroxyphenylsulfonyl)phenyl]methanesulfonamide was present in the feces of both animals. The proposed structures of other metabolites were 1,1,1-trifluoro-N-hydroxy-N-[2-methyl-4-(phenylsulfonyl)phenyl]methanesulfonamide (rat urine) and 1,1,1-trifluoro-N-{2-methyl-4-[(methylsulfonyl)-phenylsulfonyl]phenyl}methanesulfonamide (chicken urine).  相似文献   

2.
Soils which have been pretreated with carbofuran can degrade the insecticide more rapidly than untreated soils, with a consequent loss of efficacy. In laboratory studies, soils pretreated with carbofuran were found to degrade the chemical more rapidly than soils which were not so pretreated. When pretreated soils were sterilised, the rate of carbofuran degradation was much reduced, indicating that most of it was due to microbial action. Incubation of pretreated soil with [phenyl-U-14C]carbofuran led to the rapid disappearance of the parent compound (3 % left after seven days). Most of the 14C was accounted for as bound residue after seven days, whilst smaller amounts were recovered as carbon dioxide, 3-hydroxycarbofuran, 3-ketocarbofuran, and an unknown metabolite. Incubation of pretreated soil with [carbonyl-14C]carbofuran led to rapid loss of the parent compound and the recovery of 73% of 14C as carbon dioxide by five days. Most of the bound 14C (>90%) arising from [phenyl-U-14C]carbofuran treatment of pretreated soil was extracted by 1 M sodium hydroxide and about half of the extracted 14C was precipitated with ‘humic acids’ after acidification. These and other results suggest that the major metabolic route for carbofuran in pretreated soils involves hydrolysis of the ester bond leading to (1) release of carbofuran phenol which rapidly binds to soil organic matter and, (2) release of the carbonyl moiety which quickly degrades to generate carbon dioxide.  相似文献   

3.
The metabolism of the insecticide SD 8280 [2-chloro-1-(2,4-dichlorophenyl)vinyl dimethyl phosphate] in rice plants has been examined. When rice seedlings were treated with [14C]-SD 8280 the major metabolite was 1-(2,4-dichlorophenyl)ethanol which was present mainly conjugated with plant carbohydrates. This compound was also the major metabolite present in grain and straw from rice treated with [14C]-SD 8280 and grown to maturity under paddy conditions both in the glasshouse and in an outdoor enclosure. Other metabolites detected in the mature plants included 2-chloro-1-(2,4-dichlorophenyl)vinyl methyl hydrogen phosphate and 2,4-dichloro-benzoic acid, both of which occurred in free and conjugated forms. Paddy water was sampled at intervals after the application of [14C]-SD 8280 and the total residue in the water fell from initial levels of 0.28–1.1 μg/ml (expressed as SD 8280 equivalent) immediately after treatment to <0.01 μg/ml after 2–3 weeks. The total residues in the soil from these experiments were low and did not exceed 0.20 mg/kg (SD 8280 equivalents) through the 0–15 cm profile.  相似文献   

4.
以氯虫苯甲酰胺和氟虫腈的结构为基础,通过活性亚结构拼接的方法,设计合成了24个新型含吡唑杂环邻氨基苯甲酰胺类化合物,其结构经1H NM R、IR及APCI-M S表征。初步生物活性测试结果表明:化合物5-溴-N-[4-氯-2-甲基-6-(甲氨基甲酰基)苯基]-1-1-[2,6-二氯-4-(三氟甲基)苯基]-4-三氟甲基亚磺酰基-1H-吡唑-3-甲酰胺(5k)和5-溴-N-[4-溴-2-甲基-6-(甲氨基甲酰基)苯基]-1-[2,6-二氯-4-(三氟甲基)苯基]-4-三氟甲基亚磺酰基-1H-吡唑-3-甲酰胺(5l)在500 mg/L下对朱砂叶螨Tetranychus cinnabarinus的致死率为100%,但在100 mg/L下其致死率则分别降至30%和50%。所得结果可为邻氨基苯甲酰胺类化合物构效关系研究提供参考。  相似文献   

5.
Homogenates prepared from excised roots or stems and leaves of corn seedlings metabolize up to 72% of [14C]pyrimidinyl-labeled diazinon (O,O-diethyl-O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl]phosphorothioate) to 6-methyl-2-(1-methylethyl)-4-hydroxypyrimidine and one unidentified metabolite. Six-day-old corn seedling homogenate had the highest degradative activity. The optimum pH for activity was 6.0 and the activity was found to reside in the cytosol. Etrimfos [O,O-dimethyl-O-(6-ethyl-4-pyrimidinyl)phosphorothioate] was not susceptible to degradation by the corn plant preparation.  相似文献   

6.
The persistence of [14C]sethoxydim (2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexene-1-one) at the 2 μg g?1 level was studied under laboratory conditions in three soils at 20°C and 85% of their field capacity moistures. Following extraction of the soils with methanol, the herbicide remaining was determined using radiochemical techniques. Loss of radioactivity was more rapid on moist clay loam and sandy loam, where the half-lives were 12 days, than on heavy clay in which the half-life was 26 days. Loss of radioactivity from air-dried soils (15% of field capacity) was negligible with over 94% of the applied activity being recovered after 28 days. The persistence of sethoxydim at a rate of 1 kg ha?1 was investigated under field conditions using small plots at three prairie locations for 3 successive years. Using an oat-root bioassay procedure, no residues were detected in the 0–10 cm depths of any soils, any year, in September following May treatments.  相似文献   

7.
The metabolic fate of the 14C-labeled herbicide, 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione (bioxone), in cotton (Gossypium hirsutum L. “Acala 4-42-77”) was studied using thin-layer chromatography, autoradiography, and counting. Bioxone-14C was readily metabolized by cotton tissue to 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and 1-(3,4-dichlorophenyl)urea (DCPU). Leaf discs metabolized bioxone-14C rapidly; 12 hr posttreatment, 65% of the 14C in methanol extracts was in forms other than intact herbicide. Excised leaves treated through the petiole with either heterocyclic ring-labeled or phenyl ring-labeled herbicide contained little bioxone-14C after 1 day; DCPMU was formed early then decreased with time. DCPU accounted for 55–70% of the 14C in excised leaves 3 days posttreatment. In intact plants treated via the roots, the herbicide was rapidly metabolized in the roots to DCPMU and DCPU; little or no intact herbicide was translocated to the leaves. Little radioactivity accumulated in the roots with time; the radioactivity in the leaves accounted for 80–90% of the methanol-soluble 14C 47 days posttreatment. Most of the 14C in the leaves was recovered as DCPU (50–60%) and unidentified polar metabolite(s) which remained at the origin of the thin-layer plates (30–40%). The percentage of radioactivity which remained in cotton residue after methanol extraction increased with time. Digestion of the plant residues with the proteolytic enzyme pronase indicated that some of the nonextractable 14C may be DCPMU and DCPU complexed with proteins. Similar metabolic patterns were noted after treatment with either heterocyclic ring-labeled or phenyl ring-labeled bioxone-14C. Generally, bioxone was metabolized to DCPMU which in turn was demethylated to DCPU. The herbicide and DCPMU were 20 times as toxic as DCPU to oat (Avena sativa L.), a susceptible species.  相似文献   

8.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

9.
Initial signs of herbicidal injury by several diphenyl ether herbicides were monitored by following the efflux of 86Rb+ from treated cucumber (Cucumis sativis L.) cotyledons after exposure to light (600 μE m?2 sec?1; measured as PAR, i.e., photosynthetically active radiation between 400 and 700 nm). This very sensitive, rapid, and quantitative bioassay proved quite useful in (a) a structure-activity correlations study of the diphenyl ether compounds investigated and (b) an examination of herbicidal characteristics. The following diphenyl ether herbicides were analyzed: acifluorfen, sodium 5-[2-chloro-4-(trifluormethyl)phenoxy]-2-nitrobenzoate; acifluorfen-methyl (MC-10108), methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate; bifenox, methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate; nitrofen, 2,4-dichlorophenyl p-nitrophenyl ether; nitrofluorfen, 2-chloro-1-(4-nitrophenoxy)-4-(trifluoromethyl)benzene; oxyfluorfen, 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene; MC-7783, potassium 5-(2,4-dichlorophenoxy)-2-nitrobenzoate; and MC-10982, ethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate. Of the compounds investigated, acifluorfen-methyl (AFM) had the greatest degree of herbicidal activity. Cucumber cotyledons placed in high light (600 μE m?2 sec?1; PAR) with 10 nM AFM showed a significant increase in the efflux of 86Rb+ within 2 to 4 hr. Light was required for herbicidal activity by AFM, and when treated cotyledons were returned to darkness, no further damage to the tissue occurred. By decreasing the quantity of light, the effect of the compound was delayed, although the magnitudes of the responses at the different intensities (600, 300, 150, and 75 μE m?2 sec?1; PAR) were nearly equal. By increasing the length of time of dark pretreatment with 1 μM AFM, 86Rb+ efflux could be detected as early as 10 to 15 min after exposure to light (600 μE m?2 sec?1; PAR). Following light activation of AFM there was a simultaneous efflux of 86Rb+, 36Cl?, 45Ca2+, 3-O-methyl-[14C]glucose, and [14C]methylamine+. These data suggest the initial response to the herbicidal activity of AFM is expressed as a general increase in membrane permeability.  相似文献   

10.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

11.
The effects of the herbicide isouron and of its plant degradation products designated as metabolite l {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N-methylurea} and metabolite 2 {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-urea} on the metabolism of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr., cv. Essex] were compared under laboratory conditions. Photosynthesis, protein synthesis, ribonucleic acid synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, and [14C]-acetate, respectively, into the isolated cells. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10 and 100 μM of the three herbicides. The urea derivative of isouron (metabolite 2) was the least active of the three compounds. The activity of the mono-methylated derivative of isouron (metabolite 1) was comparable to that of isouron and the sensitivity of the four processes to both chemicals decreased in the order: photosynthesis > ribonucleic acid synthesis > lipid synthesis > protein synthesis. The concentration of isouron that caused a 50% inhibition of photosynthesis of the isolated soybean leaf cells was calculated at 0.51 μM. The effects of isouron and metabolite 1 on photosynthesis, lipid and RNA synthesis appeared to be independent of incubation lime as maximal inhibition occurred within 30 min. Inhibition of protein synthesis by both chemicals was time-dependent, increasing in magnitude with concomitant increases in incubation time.  相似文献   

12.
Bromoxynil octanoate labelled with 14C in the ring or in the cyano-group was applied to wheat seedlings at the two-leaf or fully-tillered stage and at rates equivalent to up to 16 oz a.i./acre. The plants were grown either in environmental chambers under controlled conditions for up to 28 days, or outdoors under field conditions for various periods up to harvest. Initially, elimination of radioactivity occurred more rapidly with bromoxynil-cyano-[14C]-octanoate than with bromoxynil-ring-[14C]-octanoate, indicating metabolic attack on the cyano group. Under outdoor conditions with ring-[14C]-herbicide applied at the two-leaf stage, only 12% of the radioactivity was retained after 28 days, principally in the treated leaves. When application was made at fully-tillered stage, about 33% of the 14C was retained after 56 days, almost entirely in the treated senescent leaves at the base of the plant. There was very little translocation of the herbicide or of any major metabolite. The level of radioactivity in harvested grain and in straw more than 7.5 cm above the ground was very low, even after very late application of ring-[14C]-labelled herbicide. The amount of bromoxynil octanoate, together with any metabolite retaining part of the aromatic ring, did not collectively exceed the equivalent of approx. 0.01 parts/million bromoxynil octanoate.  相似文献   

13.
Metabolism of the substituted diphenylether herbicide, acifluorfen [sodium 5-(2-chloro-4-trifluoromethylphenoxy)-2-nitrobenzoate], was studied in excised leaf tissues of soybean [Glycine max (L.) Merr. ‘Evans’]. Studies with [chlorophenyl-14C]- and [nitrophenyl-14C]acifluorfen showed that the diphenylether bond was rapidly cleaved. From 85 to 95% of the absorbed [14C]acifluorfen was metabolized in less than 24 hr. Major polar metabolites were isolated and purified by solvent partitioning, adsorption, thin layer, and high-performance liquid chromatography. The major [chlorophenyl-14C]-labeled metabolite was identified as a malonyl-β- -glucoside (I) of 2-chloro-4-trifluoromethylphenol. Major [nitrophenyl-14C]-labeled metabolites were identified as a homoglutathione conjugate [S-(3-carboxy-4-nitrophenyl) γ-glutamyl-cysteinyl-β-alanine] (II), and a cysteine conjugate [S-(3-carboxy-4-nitrophenyl)cysteine] (III).  相似文献   

14.
The site of uptake, absorption, and distribution of a safener, flurazole [2-chloro-4-(trifluoromethyl)-5-thiazolecarboxylic acid, (phenylmethyl ester)], and a herbicide, acetochlor [2-chloro-N-(ethoxymethyl)-6′-ethyl-O-acetoluidide], in grain sorghum [Sorghum bicolor (L.) Moench “G-522 DR”] were investigated in laboratory and growth chamber studies. Acetochlor was absorbed through shoots while flurazole was taken up primarily by roots. Uptake of [14C]acetochlor into the plant was rapid, linear, and the 14C was concentrated in primary roots by 7 days. Absorption of [14C]flurazole by sorghum was immediate, leveled off at 4 days, and the 14C was concentrated in primary roots by 7 days. Absorption and distribution of either chemical were not affected by the presence of the other. Flurazole had a slight effect on acetochlor metabolism at 3 days, but by 6 days no differences were noted.  相似文献   

15.
[14C]Diflubenzuron is readily degraded in various agricultural soils and in hydro-soil; 50% of the applied dose of 1 mg kg−1 was metabolised in 2 days or less. The chief products of hydrolysis were identified as 4-chlorophenylurea and 2, 6-difluorobenzoic acid. A part of the radioactivity, increasing with incubation time, could not be extracted. Release from the soil of [14C]carbon dioxide, derived from both labelled phenyl rings, points to the ultimate mineralisation of diflubenzuron.  相似文献   

16.
Increasing adsorption of [14C]-labelled carbendazim in soil took place within a few weeks of incubation and was greatest in soil with a high organic matter content. Carbendazim was slowly decomposed in soil, mainly by soil microorganisms. After 250 days of incubation in two unsterilised soils, 13 and 5% respectively of added [14C]-carbendazim was recovered compared with 70 and 50% respectively from sterile soils; 4–8% of added carbendazim was recovered as 2-aminobenzimidazole (2-AB) from both unsterilised and sterile soil. After 270 days' incubation, 33 and 9% of 14C was recovered as 14CO2 from soil supplied with [14C]-carbendazim (20 and 100 mg/kg) respectively. Degradation started more rapidly when carbendazim was added to soil preincubated with the fungicide but the degradation rate was very low in all cases, indicating that the compound is a poor microbial energy source and that the degradation is a co-metabolic process. 2-AB was found as a degradation product although it appeared to be unstable in soil, decomposing rapidly after a lag period of about 3 weeks; small amounts remained in the soil for several months, however, presumably adsorbed on soil particles.  相似文献   

17.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

18.
A simple and rapid method for extracting benomyl residues from soils was compared with previous methods. Soil was extracted by shaking for 2 h at room temperature with (1:1) acetone/M aqueous ammonium chloride followed by clean-up by solvent partition and ultraviolet absorption estimation of carbendazim. Recoveries were comparable to those obtained by refluxing with methanolic hydrochloric acid for 4 h, hitherto the most efficient method reported, and were much greater than those obtained by extraction with ethyl acetate or chloroform. The new method gave more tractable extracts than those obtained by refluxing with methanolic hydrochloric acid, which form troublesome metal hydroxide precipitates during clean-up. In field experiments with 2-[14C]-benomyl and 2-[14C]-carbendazim, no radioactivity was found more than 25 mm from the soil surface during 10 months after surface application of 1 kg/ha. Carbendazim residues in soils from three field experiments indicated that its persistence is very sensitive to soil pH. The time for 50% loss of initial dose ranged from 26 months at pH 5.5 to less than 3 months at pH 7.2. Biological effectiveness in a crop may therefore depend markedly on differences in soil pH.  相似文献   

19.
以[14C]碳酸钡为放射性同位素原料,通过格氏反应、亲核取代、胺化和缩合等8步放化反应制备了2种放射性同位素碳-14标记的氯虫苯甲酰胺粗品,经反相高效液相色谱(RPHPLC)纯化获得标记物纯品14C-氯虫苯甲酰胺[3-溴-N-[4-氯-2-甲基-6-(甲氨基[羰基-14C]甲酰基)苯基]-1-(3-氯-2-吡啶基)-1H-吡唑-5-甲酰胺(2,55.6 mCi)和3-溴-N-[4-氯-2-甲基-6-(甲氨基甲酰基)苯基]-1-(3-氯-2-吡啶基)-1H-吡唑-5-[羰基-14C]甲酰胺(3,58.6 mCi)]。以[14C]碳酸钡计,两种标记物的总放化收率分别为32%和52%。其结构经核磁共振氢谱、质谱和在线放射性高效液相色谱(HPLC-FSA)分析确认。放射性薄层成像分析(TLC-IIA)、离线放射性高效液相色谱分析(HPLC-LSC)、在线放射性高效液相色谱-二极管阵列检测器/质谱联用(HPLCFSA/PDA/MS)和LSC分析表明,两种14C-氯虫苯甲酰胺的放化纯度分别为99.8%和99.6%,化学纯度分别为99.1%和98.4%,比活度分别为52.45 mCi/mmol和52.30 mCi/mmol。这2种标记物可作为放射性示踪剂,可满足氯虫苯甲酰胺在中国的登记代谢试验研究的需要。  相似文献   

20.
Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号