首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.  相似文献   

2.
In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered understory than in an open elevated area, similar to the canopy. Early leaf expansion by juvenile trees may result in a period of disproportionately higher carbon gain, similar to gains made during summer months from use of sun flecks.  相似文献   

3.
We measured the seasonal and temperature responses of leaf photosynthesis and respiration of two co-occurring native New Zealand tree species with contrasting leaf phenology: winter-deciduous fuchsia (Fuchsia excorticata J. R. Forst & G. Forst) and annual evergreen wineberry (Aristotelia serrata J. R. Forst & G. Forst). There was no difference in the amount of nitrogen per unit leaf area (Narea, range 40-160 mmol m-2, P = 0.18) or specific leaf area (S, range 8-27 m2 kg-1, P = 0.87) in summer leaves of wineberry or fuchsia. The amount of nitrogen per unit leaf area and S varied significantly with height of leaves in the canopy for both species (r2 range 0.61-0.87). Parameters describing the maximum rates of rubisco carboxylation (Vcmax) and electron transport (Jmax) were related significantly to Narea, and were 60% higher on average in spring and summer leaves than in autumn and winter leaves for both species. The seasonal effect remained significant (P < 0.001) when Narea was included in a regression model, indicating that seasonal changes were not only due to changes in Narea. Values for Vcmax and Jmax were 30% lower in wineberry leaves than in fuchsia leaves on average, although the difference ranged from 15% in summer leaves to 39% in autumn leaves. Activation energies describing the temperature dependence of Vcmax and Jmax in wineberry were 111 and 114% of corresponding values for fuchsia (Ea (Vcmax) = 39.1 kJ mol-1, Ea (Jmax) = 32.9 kJ mol-1). Respiration at night was the same (P = 0.34) at 10 degrees C for both species (R10 = 0.7 micromol m-2 s-1), although activation energies (E0) were higher in wineberry than in fuchsia (47.4 and 32.9 kJ mol-1 K-1, respectively). These results show that rates of photosynthesis are higher in winter-deciduous fuchsia than in annual evergreen wineberry.  相似文献   

4.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

5.
Cunningham SC  Read J 《Tree physiology》2006,26(11):1435-1443
Australian rain forests extend from tropical climates in the north to temperate climates in the south, providing an opportunity to investigate physiological responses to temperature of both temperate and tropical species within the same forest type. Eight, rain forest canopy tree species were selected to cover the 33 degrees latitudinal range of rain forests in eastern Australia. Temperature tolerance was measured in 6-year-old plants grown in a common environment, by exposing leaves to a series of high temperatures during late summer and a series of freezing temperatures during midwinter. Damage was evaluated based on chlorophyll fluorescence measurements made 2 h after exposure and by visual assessment of leaf damage made a week after exposure. Leaves of the tropical species were more heat tolerant and less frost tolerant than leaves of the temperate species, which is consistent with their climate distributions. In contrast, the temperature tolerance of the photosynthetic apparatus was unrelated to climate in a species' native habitat. However, the tropical species underwent significant photoinhibition during winter. All species maintained the integrity of the photosynthetic apparatus and avoided tissue damage over a similar span of temperatures (about 60 degrees C), reflecting the similar annual temperature ranges in Australia's temperate and tropical rain forests. Chlorophyll fluorescence measurements and visual assessment of leaf damage provided different estimates of the absolute and relative temperature tolerances of the species, thus emphasizing the importance of a direct assessment of tissue damage for determining a species' temperature tolerance.  相似文献   

6.
This study was conducted to document the effects of canopy change on radiation and energy balances in a deciduous broad-leaved forest. Global solar radiation was highly variable with a maximum close to 28.7 MJ m−2 day−1 and a minimum of about 0.7 MJ m−2 day−1. The high daily variation of net radiation was the result of the frequency and duration of rainfall. The mean annual albedo in this study site was 0.126. Seasonal variation of albedo was characterized by steadily decreasing values with leaf-fall, but at the time when new leaves sprouted the trend did turn upwards. The mean annual radiation efficiency at this study site was 0.564, and the seasonal variation of the radiation efficiency was dependent upon the net long-wave radiation rather than albedo. This study also illustrated the seasonal variation of the proportion of the actual evaporation to the equilibrium evaporation as a means for estimating the latent heat flux from forest using the equilibrium evaporation model. Seasonal variation of the proportion of the actual evaporation to the equilibrium evaporation reflected the physiological and productive activities of trees. Latent heat flux dominated the energy balance and, in particular, reached about 96% of net radiation in July.  相似文献   

7.
8.
Zhu GF  Li X  Su YH  Lu L  Huang CL 《Tree physiology》2011,31(2):178-195
A combined model to simulate CO? and H?O gas exchange at the leaf scale was parameterized using data obtained from in situ leaf-scale observations of diurnal and seasonal changes in CO? and H?O gas exchange. The Farquhar et al.-type model of photosynthesis was parameterized by using the Bayesian approach and the Ball et al.-type stomatal conductance model was optimized using the linear least-squares procedure. The results show that the seasonal physiological changes in photosynthetic parameters (e.g., V(cmax25), J(max25), R(d25) and g(m25)) in the biochemical model of photosynthesis and m in the stomatal conductance model should be counted in estimating long-term CO? and H?O gas exchange. Overall, the coupled model successfully reproduced the observed response in net assimilation and transpiration rates.  相似文献   

9.
We studied changes in the hydraulic conductance of leaves (K(leaf)) between dawn and dusk during the growth period (July) and at midday at the beginning of autumn in four tree species. The main objectives of the study were to check the extent of diurnal and seasonal changes in K(leaf) and the relationships between K(leaf), irradiance and leaf gas exchange. Two evergreen (Aleurites moluccana and Persea americana) and two deciduous trees (Platanus orientalis and Quercus rubra) were studied. Leaf hydraulic conductance was measured every 2 h between 0700 and 1900 h in July and compared with values measured between 0900 and 1300 h in October. Other variables measured were photosynthetically active radiation (PAR), leaf conductance to water vapor (gL) and water potential (psiL). In July, K(leaf) varied by up to 75% in Pe. americana on a diurnal basis and by at least 44% in Q. rubra. The diurnal time course of K(leaf) showed a distinct increase between dawn and late morning (1100 h) and a subsequent decrease in the evening in A. moluccana and Pl. orientalis, whereas in the other two species, K(leaf) was highest just after dawn and lowest in the evening. In October, K(leaf) of all the species studied was lower than in July, with differences of 20 to 28% for A. moluccana and Pl. orientalis and of 66 to over 70% in Pe. americana and Q. rubra, respectively. Significant correlations were found between PAR and K(leaf) (in all species) as well as between gL and K(leaf) (in three out of four species). Leaf habit (evergreen or deciduous) did not influence absolute values of K(leaf) or its diurnal variation.  相似文献   

10.
Stocking and structural composition of a deciduous broad-leaved forest were determined to predict coarse woody debris quantity by quantifying the empirical relationships between these two attributes. The most ecologically significant families by stem density were Salicaceae, Betulaceae, Fagaceae, and Aceraceae. P opulus davidiana was the most dominant species followed by B etula dahurica, Quercus mongolica, and Acer mono. The four species accounted for 69.5% of total stems. Numerous small-diameter species characterized the coarse woody debris showing a reversed J-shaped distribution. The coarse debris of P. davidiana, B. dahurica, and Q. mongolica mainly comprised the 10–20 cm size class, whereas A. mono debris was mainly in the 5–10 cm size class. The spatial patterns of different size classes of coarse woody debris were analyzed using the g-function to determine the size of the tree at its death. The results indicate that the spatial patterns at the 0–50 m scale shifted gradually from an aggregated to a random pattern. For some species, the larger coarse debris might change from an aggregated to a random distribution more easily. Given the importance of coarse woody debris in forest ecosystems, its composition and patterns can improve understanding of community structure and dynamics. The aggregation pattern might be due to density dependence and self-thinning effects, as well as by succession and mortality. The four dominant species across the different size classes showed distinct aggregated distribution features at different spatial scales. This suggests a correlation between the dominant species population, size class, and aggregated distribution of coarse woody debris.  相似文献   

11.
Leaf-fall phenology was studied in a cool–temperate deciduous broad-leaved forest in central Japan in relation to the topographic environmental gradients that occur along a short mountain slope. Leaf-fall phenology was described quantitatively using data from leaf litter collected along the slope. In autumn, leaf fall at the study site tended to occur slightly earlier on the upper slope than on the lower slope. This pattern was found at both the stand and the species levels. Our results suggest that leaf-fall phenology may be affected by difference in microclimatic conditions, because environmental conditions are thought to be more severe on the upper slope than on the lower slope. The less intensive methods used in this study, the litter trap method, and Dixon’s model succeeded in quantifying the phenological patterns of leaf fall within stands and within species along the short mountain slope.  相似文献   

12.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

13.
  涛等 《山东林业科技》2014,(1):99-102
作为环境因子,风与树木的关系较其他因子复杂,树木对风胁迫的响应与适应是植物逆境生理生态学研究的热点和难点。本文综述了不同叶形树种叶片气体交换对风胁迫的响应差异,总结发现风对不同叶形树种叶片气体交换影响的研究结论差异较大,有的甚至截然相反,表明了不同叶形树种叶片气体交换对风胁迫响应的复杂性。同时分析了由叶形引起的微环境、边界层导度和理化特征对叶片气孔交换的影响。  相似文献   

14.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

15.
为清楚阐明蒙古栎林的群落分级及其在温带落叶阔叶林群落分级中的地位,我们收集了东北亚201个蒙古栎林和日本的153个栎林的资料.将其综合于一个简表中.并应用Braun—Blanquet方法对这些森林植被进行了比较。结果表明:在温带落叶阔叶林的群落分级系统中。蒙古栎林与水青冈纲占据着同等重要的地位,它们共同构成温带落叶阔叶林纲群(Class-group)。不同生境下的蒙古栎的20个群集或群落被归纳成为2个目、3个群团和3个亚群团。  相似文献   

16.
Spatial distribution is fundamental for understanding species coexistence mechanisms in forest communities.Here we comprehensively explored fine-scale spatial patterns of tree species in a secondary warm-temperate deciduous broad-leaved forest community in north China.Aggregated distribution patterns were predominant.Species functional traits had no significant effects on their spatial patterns.The aggregation intensity decreased with increasing DBH and abundance.The multivariate linear stepwise regression showed that abundance and maximum DBH were correlated with the aggregation intensity.Our results partially confirm that species attributes(abundance,DBH) and habitat heterogeneity may primarily contribute to spatial patterns and species coexistence in this secondary forest.  相似文献   

17.
Foliar biomass investment in support and assimilative compartments was studied in four temperate deciduous tree species along a natural light gradient across the canopy. The species ranked according to shade tolerance as Betula pendula Roth. < Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. Long-term light conditions at sampling locations were characterized as seasonal mean integrated quantum flux density (Q(int), mol m(-2) day(-1)) estimated by a method combining hemispherical photography and light measurements with quantum sensors. Leaf morphology was altered by Q(int) in all species. Both lamina and petiole dry mass per lamina area (LMA and PMA, respectively) increased with increasing Q(int). Shade-tolerant species had lower LMA at low Q(int) than shade-intolerant species; however, PMA was not related to shade tolerance. Across species, the ratio of petiole dry mass to lamina dry mass (PMR) varied from 0.07 to 0.21. It was independent of Q(int) in the simple-leaved species, but decreased with increasing Q(int) in the compound-leaved F. excelsior, which also had the largest foliar biomass investment in petioles. Differences in leaf mass and area, ranging over four orders of magnitude, provided an explanation for the interspecific variability in PMR. Species with large leaves also had greater biomass investments in foliar support than species with smaller leaves. This relationship was similar for both simple- and compound-leaved species. There was a negative relationship between PMR and petiole N concentration, suggesting that petioles had greater carbon assimilation rates and paid back a larger fraction of their construction cost in species with low PMR than in species with high PMR. This was probably the result of a negative relationship between PMR and petiole surface to volume ratio. Nevertheless, petioles had lower concentrations of mineral nutrients than laminas. Across species, the ratio of petiole N to lamina N varied from only 3 to 6%, demonstrating that petiole costs are less in terms of nutrients than in terms of total biomass, and that the petiole contribution to carbon assimilation is disproportionately lower than that of the lamina contribution.  相似文献   

18.
Four ligneous species from the tropical forest in the east of Madagascar, with a proven or potentially high economic value, were subject to ‘low-tech’ vegetative propagation tests from stem cuttings. The species concerned were Aphloia theiformis, Ilex mitis, Prunus africana and Ravensara aromatica. The cuttings were three-node segments of stems on which one leaf was retained. All the species proved amenable to rooting. The maximum percentage of rooting ranged from 33% for P. africana to 60% for I. mitis. Rooting success was dependant on the season of cutting (high in the hot season, from October to May, and null in cold season). This study is the first successful attempt at propagating cuttings from Malagasy forest species. This result is of particular importance to P. africana, threatened by destructive exploitation in Madagascar. It goes a step further in the domestication of this species by demonstrating the ability of cutting from 10 year old ortets collected in natural forest to root as it offers the possibility of a reliable and effective method of reintroduction for the species in overexploited zones.  相似文献   

19.
The effects of a typhoon on forest dynamics and the response of major tree species were studied in a warm-temperate evergreen broad-leaved forest in southwestern Japan. The strongest typhoon on record (T9313) passed through this region in 1993. Return periods of typhoons over 30 ms−1 in instantaneous wind velocity and T9313 were estimated to be 2.2 and 104.5 years, respectively. Approximately 10% of all stems suffered some damage from T9313 and annual stem mortality rose from 1.3 to 2.7%. The estimated period that the number of stems would fall below 10% of the initial was four years shorter with T9313-class typhoons than without them. Thus, the disturbance by T9313 was not catastrophic at the site although T9313 was an episodic typhoon. The short-term responses of major tree species to T9313 were classified into four types: 1) blunt-response type with little decrease and recruitment of stems in the DBH ≥ 5 cm class (Distylium racemosum), 2) retreat type with larger decrease than recruitment (e.g. Quercus acuta), 3) sharp-response type with a large decrease and much recruitment (e.g. Cinnamomum japonicum), and 4) advance type with less decrease than recruitment (Eurya japonica). Among the four regeneration types classified by previous studies (climax, light-demanding, subcanopy, and few-sapling), the climax and few-sapling types each showed a specific short-term response, the blunt-response and retreat types, respectively, that explains one aspect of the regeneration strategies of each type. On the other hand, the light-demanding or sub-canopy type showed multiple short-term responses, indicating that each regeneration type contains species with various regeneration strategies. In this paper, I analyzed data from the database that was compiled by the Aya Research Team.  相似文献   

20.
The nitrogen (N) cycling was elucidated in a 40-year-old subtropical evergreen broad-leaved forest dominated by Cyclobalanopsis glauca growing on red soil in Zhejiang Province, East China. The concentrations of N in the representative species ranged from 0.49% to 1.64%, the order of which in various layers was liana and herb layers > understory layer > tree and subtree layers; in various organs was leaf > branch > root > trunk; and aboveground parts > underground parts. The sequence of the concentrations of N in C. glauca was understory > tree > subtree layer; young and high-growing > old organs; reproductive > vegetative organs. Seasonal dynamics of the concentrations of N in C. glauca in the tree and subtree layers was comparatively stable. It was lower in autumn (October) in root, branch, and leaf in the tree layer, and low in January in the understory. There was no evident change in regularity of the concentrations of N in varying diameter classes. The concentrations of N in the litterfall, precipitation, throughfall, litter layer, and soil were 0.74%–2.30%, 0.000,038%, 0.000,09%, 1.94%, and 0.59%, respectively. The standing crop of N in the plant community was 1,025.28 kg/hm2, accumulation in the litter layer was 224.88 kg/hm2, and reserve in the soil was 55,151 kg/hm2. Annual retention of N was 119.47 kg/hm2, return was about 84.13 kg/hm2, among which litterfall was 78.49 kg/hm2 and throughfall, 5.64 kg/hm2. Annual absorption of N was 203.60 kg/hm2. Annual input of N through incident precipitation was 4.88 kg/hm2. Compared with other forest types, cycling rate of N in the community was lower than in deciduous broad-leaved forests, rain forests, and mangroves, and was moderate in evergreen broad-leaved forests. N use efficiency of this forest was moderate among the forest types cited. According to the characteristics of the biocycle of phosphorous, it was concluded that N availability in the soil of this forest was not lower, and phosphorous not N was the limiting factor in the growth of plants in this community. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 740–748 [译自: 生态学报, 2005, 25(4): 740–748]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号