首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveTo compare the efficacy of single-breath continuous positive airway pressure manoeuvre (CPAP-M) with inhaled salbutamol, and a combination of both.Study designRandomized, clinical study.AnimalsA total of 62 client-owned horses (American Society of Anesthesiologists status III–V) anaesthetized for laparotomy.MethodsHorses were premedicated with intravenous (IV) xylazine (0.4–0.6 mg kg–1), anaesthesia was induced with midazolam (0.06 mg kg–1 IV) and ketamine (2.2 mg kg–1 IV) and maintained with isoflurane in oxygen using volume-controlled ventilation without positive end-expiratory pressure. If PaO2 was < 100 mmHg (13.3 kPa), either a CPAP-M (50 cmH2O for 45 seconds) or salbutamol (0.002 mg kg–1) was administered. The intervention was considered successful if PaO2 reached 100 mmHg (13.3 kPa). If PaO2 remained < 100 mmHg (13.3 kPa), treatments were switched. PaO2/FiO2 ratio and estimated shunt fraction (F-shunt) were derived from data obtained from arterial blood gas measurements. Dynamic compliance (Cdyn) was calculated from variables recorded at the moment of arterial blood analysis. Fisher’s exact tests compared success rates between treatments, and linear models were performed to test whether the treatment modified the values of the measurements; p < 0.05.ResultsSalbutamol was the first intervention in 28 horses and was effective in 22 horses. CPAP-M was the first intervention in 34 horses and was effective in 26 horses. CPAP-M after salbutamol was performed in six horses, with four responders, and salbutamol after CPAP-M was administered to eight horses, with one responder. Salbutamol, but not CPAP-M, significantly decreased F-shunt. Both salbutamol and CPAP-M significantly increased Cdyn.Conclusions and clinical relevanceSalbutamol and CPAP-M were comparably effective in improving oxygenation and Cdyn in anaesthetized horses with PaO2 < 100 mmHg (13.3 kPa). Whether combining both treatments might be beneficial needs to be confirmed on a larger number of horses.  相似文献   

2.
Objective The study aimed to investigate the effect of varying pulse lengths of inhaled nitric oxide (iNO), and 2.5 hours of continuous pulse‐delivered iNO on pulmonary gas exchange in anaesthetized horses. Study Design Experimental study. Animals Six Standardbred horses. Methods Horses received acepromazine, detomidine, guaifenesin, thiopentone and isoflurane in oxygen, were positioned in dorsal recumbency and were breathing spontaneously. iNO was on average pulsed during the first 20, 30, 43 or 73% of the inspiration in 15 minute steps. The pulse length that corresponded to the highest (peak) partial pressure of arterial oxygen (PaO2) in the individual horses was determined and delivered for a further 1.5 hours. Data measured or calculated included arterial and mixed venous partial pressures of O2 and CO2, heart rate, respiratory rate, expired minute ventilation, pulmonary and systemic arterial mean pressures, cardiac output and venous admixture. Data (mean ± SD) was analysed using anova with p < 0.05 considered significant. Results Although the pulse length of iNO that corresponded to peak PaO2 varied between horses, administration of all pulse lengths of iNO increased PaO2 compared to baseline. The shortest pulse lengths that resulted in the peak PaO2 were 30 and 43% of the inspiration. Administration of iNO increased PaO2 (12.6 ± 4.1 kPa [95 ± 31 mmHg] at baseline to a range of 23.0 ± 8.4 to 25.3 ± 9.0 kPa [173 to 190 mmHg]) and PaCO2 (8.5 ± 1.2 kPa [64 ± 9 mmHg] to 9.8 ± 1.5 kPa [73 ± 11 mmHg]) and decreased venous admixture from 32 ± 6% to 25 ± 6%. The increase in PaO2 and decrease in venous admixture was sustained for the entire 2.5 hours of iNO delivery. Conclusions The improvement in arterial oxygenation during pulsed delivery of iNO was significant and sustained throughout 2.5 hours of anaesthesia. Clinical relevance Pulsed iNO potentially could be used clinically to counteract hypoxemia in anaesthetized horses.  相似文献   

3.
Objective To study the effect of the pulsed delivery of nitric oxide (NO) on pulmonary gas exchange in the anaesthetized horses. Design Prospective, controlled randomized. Animals Five healthy Standardbred trotters, three geldings and two mares. Methods The horses were anaesthetized with thiopentone and isoflurane and positioned in dorsal recumbency. Nitric oxide was added as a pulse to the inspired gas during the first half of each inspiration. In three horses the effect of NO on the ventilation–perfusion distribution was also investigated using the multiple inert gas elimination technique. Data were analysed with repeated measures ANOVA. Results During spontaneous breathing, arterial oxygen tension (PaO2) increased with NO inhalation, from 14 ± 2 to 29 ± 3 kPa (105 ± 15 to 218 ± 23 mm Hg) (p < 0.001). Arterial oxygen tension also increased, from 17 ± 3 to 31 ± 5 kPa (128 ± 23 to 233 ± 38 mm Hg) (p < 0.05) during intermittent positive pressure ventilation. The increase in PaO2 was mainly due to a reduced right to left vascular shunt, but ventilation and perfusion matching also improved. The beneficial effect of NO inhalation was lost within 5 minutes of its discontinuation. Conclusion Delivery of NO as a pulse during inspiration is an effective method for counteracting impaired gas exchange caused by anaesthesia in horses. Pulsation has to be continuous because of the transience of NO's therapeutic effect. Clinical relevance Horses with impaired pulmonary gas exchange during anaesthesia can be treated with pulsed NO inhalation.  相似文献   

4.
Objective To compare, ventilation using intermittent positive pressure ventilation (IPPV) with constant positive end‐expiratory pressure (PEEP) and alveolar recruitment manoeuvres (RM) to classical IPPV without PEEP on gas exchange during anaesthesia and early recovery. Study design Prospective randomized study. Animals Twenty‐four warm‐blood horses, weight mean 548 ± SD 49 kg undergoing surgery for colic. Methods Premedication, induction and maintenance (isoflurane in oxygen) were identical in all horses. Group C (n = 12) was ventilated using conventional IPPV, inspiratory pressure (PIP) 35–45 cmH2O; group RM (n = 12) using similar IPPV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths PIP 60, 80 then 60 cmH2O, held for 10–12 seconds). RMs were applied as required to maintain arterial oxygen tension (PaO2) at >400 mmHg (53.3 kPa). Physiological parameters were recorded intraoperatively. Arterial blood gases were measured intra‐ and postoperatively. Recovery times and quality of recovery were measured or scored. Results Statistically significant findings were that horses in group RM had an overall higher PaO2 (432 ± 101 mmHg) than those in group C (187 ± 112 mmHg) at all time points including during the early recovery period. Recovery time to standing position was significantly shorter in group RM (49.6 ± 20.7 minutes) than group C (70.7 ± 24.9). Other measured parameters did not differ significantly. The median (range) of number of RMs required to maintain PaO2 above 400 mmHg per anaesthetic was 3 (1–8). Conclusion Ventilation using IPPV with constant PEEP and RM improved arterial oxygenation lasting into the early recovery period in conjunction with faster recovery of similar quality. However this ventilation mode was not able to open up the lung completely and to keep it open without repeated recruitment. Clinical relevance This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses.  相似文献   

5.
Objective To characterize the acute cardiopulmonary effects of severe hemorrhage in anesthetized horses. Study design Prospective experimental study. Animals Three geldings and six mares, aged 14.4 ± 2.7 years, weighing 486 ± 41 kg (range: 425–550 kg). Methods Horses were anesthetized using xylazine, guaifenesin, ketamine and halothane or isoflurane. Cardiovascular variables, hematocrit, total solids, capillary refill time (CRT) and color of mucous membranes were measured as blood was collected from the carotid artery into sterile plastic bags. Arterial blood gas analysis was also performed. Results The average amount of blood collected from these horses was (mean ± SD) 53 ± 4.8 mL kg?1 bodyweight (range: 23–32 kg) over 39 ± 4 minutes. Hematocrit decreased from 38 ± 3 to 32 ± 2% after induction of anesthesia and did not change significantly over the period of blood loss. Total solids decreased significantly after induction of anesthesia, and over the period of blood loss. Systolic, mean, diastolic and pulse pressures decreased as blood was lost. Heart rate did not change significantly. Capillary refill time increased from 1.6 ± 0.4 seconds to 4.8 ± 1.3 seconds as blood loss increased. Mucous membrane color deteriorated progressively. Arterial PO2 decreased significantly over the period of blood loss. Conclusions Hematocrit and heart rate do not change significantly during acute severe hemorrhage in the anesthetized horse. Arterial blood pressure, pulse pressure and PaO2 decrease as blood loss increases. Changes in mucous membrane color and CRT also occur as blood loss increases. Clinical relevance During severe hemorrhage in the inhalant‐anesthetized horse, both heart rate and hematocrit remain unchanged. Blood pressure decreases and changes in arterial PO2 correlate most strongly with volume of blood lost.  相似文献   

6.
Objective To characterize intravenous anaesthesia with detomidine, ketamine and guaiphenesin in pregnant ponies. Animals Twelve pony mares, at 260–320 days gestation undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (30 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) preceded induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was measured directly throughout anaesthesia and arterial blood samples were taken at 20‐minute intervals for measurement of blood gases and plasma concentrations of cortisol, glucose and lactate. Anaesthesia was maintained with an IV infusion of detomidine (0.04 mg mL?1), ketamine (4 mg mL?1) and guaiphenesin (100 mg mL?1) (DKG) for 140 minutes. Oxygen was supplied by intermittent positive pressure ventilation (IPPV) adjusted to maintain PaCO2 between 5.0 and 6.0 kPa (38 and 45 mm Hg), while PaO2 was kept close to 20.0 kPa (150 mm Hg) by adding nitrous oxide. Simultaneous fetal and maternal blood samples were withdrawn at 90 minutes. Recovery quality was assessed. Results DKG was infused at 0.67 ± 0.17 mL kg?1 hour?1 for 1 hour then reduced, reaching 0.28 ± 0.14 mL kg?1 hour?1 at 140 minutes. Arterial blood gas values and pH remained within intended limits. During anaesthesia there was no change in heart rate, but arterial blood pressure decreased by 10%. Plasma glucose and lactate increased (10‐fold and 2‐fold, respectively) and cortisol decreased by 50% during anaesthesia. Fetal umbilical venous pH, PO2 and PCO2 were 7.34 ± 0.06, 5.8 ± 0.9 kPa (44 ± 7 mm Hg) and 6.7 ± 0.8 kPa (50 ± 6 mm Hg); and fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 4.0 ± 0.7 kPa (30 ± 5 mm Hg) and 7.8 ± 1.7 kPa (59 ± 13 mm Hg), respectively. Surgical conditions were good but four ponies required a single additional dose of ketamine. Ponies took 60 ± 28 minutes to stand and recovery was good. Conclusions and clinical relevance Anaesthesia produced with DKG was smooth while cardiovascular function in mare and fetus was well preserved. This indicates that DKG infusion is suitable for maintenance of anaesthesia in pregnant equidae.  相似文献   

7.
Anaesthetic records of horses with colic anaesthetised between June 1987 and May 1989 were reviewed. pH and blood gas analyses were performed during 157 operations from which the horses were allowed to recover. A PaO2 of 8.0 kPa or less was measured during anaesthesia in seven of these horses. The horses were of different breeds, ages and sexes. Anaesthesia was induced with xylazine, guaifenesin and ketamine in four horses and with xylazine, guaifenesin and thiobarbiturate in three horses. Anaesthesia was maintained with inhalation anaesthetic agent and oxygen: isoflurane in five horses, halothane in one horse, and initially halothane but later isoflurane in one horse. Systolic arterial pressures during anaesthesia ranged from 80 to 150 mmHg, diastolic arterial pressures were between 60 and 128 mmHg, and heart rates were between 28 and 44 beats /min. Controlled ventilation was initiated at the start of anaesthesia. PaCO2 exceeded 6.7 kPa in three horses but was subsequently decreased by adjustment of the ventilator. PaO2 of 8.0 kPa or less was measured during early anaesthesia, with one exception, and persisted for the duration of anaesthesia. The horses' inspired air was supplemented with oxygen during recovery from anaesthesia, at which time measurement of blood gases in three horses revealed no increase in PaO2. Recovery from anaesthesia was uneventful. The surgical problems involved primarily the large intestine in five horses and the small intestine in two horses. Six horses were discharged from the hospital alive; one horse was reanaesthetised later the same day and destroyed without regaining consciousness. We concluded that none of the objective values recorded during the pre-anaesthetic evaluation could have been used to predict the complication of intraoperative hypoxaemia. We observed that once hypoxaemia developed it persisted for the duration of anaesthesia and even into the recovery period when the horses were in lateral recumbency and regaining consciousness. We assume that the altered metabolism from anaesthetic agents and hypothermia combined with adequate peripheral perfusion contributed to the lack of adverse consequences in six of the horses. The contribution of hypoxaemia to the deteriorating condition of the seventh horse is speculative.  相似文献   

8.
Objective To compare the cardiopulmonary effects of the head‐down position, with or without capnoperitoneum, in halothane‐anesthetized horses. Study design Prospective randomized study. Animals Five ponies (four mares, one stallion; bodyweight 302 ± 38.4 kg [mean ± SD]) were used. Methods The ponies were anesthetized with xylazine, guiafenesin, ketamine, and maintained with halothane/oxygen and lungs were ventilated to 40 ± 2 mm Hg (5.3 ± 0.3 kPa) end‐tidal CO2 tension. After baseline cardiopulmonary measurements, ponies were kept in horizontal position for 30 minutes, then tilted head‐down 30° to the horizontal position for 60 minutes, and then returned to a horizontal position for final measurements. Capnoperitoneum (intra‐abdominal pressure: 12 mm Hg [1.6 kPa]) was introduced after baseline cardiopulmonary measurements, until 5 minutes before the final measurements (treatment INS). Ponies in the control treatment (CON) did not receive capnoperitoneum. Cardiopulmonary data were collected every 10 minutes following the baseline measurements until recovery. Results In the head‐down position, in both treatments, significant decreases were observed in PaO2, and significant increases were observed in PaCO2, right atrial blood pressure, arterial to end‐tidal CO2 gradient, calculated Vd/Vt and ratios. During the head‐down position, in CON there was decreased cardiac index, and in INS, there were decreases in arterial plasma pH and increases in mean systemic arterial and airway pressures. Treatment INS developed ventilation–perfusion mismatch earlier in the study, and had longer recovery times compared to CON. Conclusion Cardiac index and systemic blood pressure appeared to be preserved in INS during the head‐down position, but ventilation–perfusion mismatch appeared earlier with head‐down position and capnoperitoneum. Clinical relevance Healthy ponies tolerate capnoperitoneum at 12 mm Hg (1.6 kPa) intra‐abdominal pressure when tilted head down 30° to the horizontal position.  相似文献   

9.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

10.
This study evaluated the antinociceptive and physiologic effects of xylazine (X) and detomidine (D) administered intrathecally (IT) at the lumbosacral space, before and after the injection of atipamezole (A) IV. The study was approved by the National Animal Protection Authorities. Five adult healthy female sheep were anaesthetized with propofol on four occasions to inject the following treatments IT: groups 1 and 2, 0.05 mg kg?1 X (2 mg mL?1 saline) IT; groups 3 and 4, 0.01 mg kg?1 D (0.5 mg mL?1 saline) IT ( Waterman et al. 1988 ). Nociceptive threshold (TH) was tested by applying pulsed and stepwise enhanced direct current ( Ludbrook et al. 1995 ) at one hind leg pastern and noting the current at the moment of foot lift. Maximum current applied was 40 mA. Baseline TH was measured twice before anaesthesia and every 10 minutes when the sheep regained consciousness. Atipamezole was given IV immediately after reaching maximum analgesic action of X and D as defined by two equal or decreasing TH values and measurements were continued for 90 minutes. The dose of A for groups 1 and 3 was 0.005 mg kg?1 (0.25 mg mL?1 saline) IV, and for groups 2 and 4 was 0.0025 mg kg?1 A (0.25 mg mL?1 saline) IV. Heart rate (HR), mean direct arterial pressure (MAP), PaO2 and PaCO2 were measured. The differences between measurements recorded before and after treatment were analysed using a paired t‐test for the drug effects and a nonparametric Wilcoxon's rank sum test for the comparison between groups. A p‐value < 0.05 was considered significant. All sheep were able to stand before A IV. Threshold baseline value was 4.5 ± 1.7 (mean ± SD) mA for all animals. Xylazine caused a significantly higher TH rise (35.2 ± 1.8 mA), faster onset (21.1 ± 16.0 minutes) and longer duration of the TH enhancement (104.1 ± 8.6 minutes) than D (TH: 16.3 ± 7.8 mA, onset: 49.5 ± 28.4 minutes, duration: 59.3 ± 27.3 minutes). A significant increase in PaCO2 was observed in the X and D treated animals, 0.39 ± 0.21 kPa (2.9 ± 1.6 mm Hg) and 0.39 ± 0.29 kPa (2.9 ± 2.2 mm Hg), respectively. Heart rate was significantly decreased by ?21 ± 17 beats minute?1 for X animals and ?13 ± 13 beats minute?1 for D. Mean arterial pressure (?9 ± 13 mm Hg for X and ?1 ± 11 mm Hg for D animals) and PaO2 0.65 ± 1.32 kPa (4.9 ± 9.9 mm Hg) for X and 1.45 ± 4.19 kPa (10.9 ± 31.4 mm Hg) for D animals) did not change significantly. The nociceptive threshold was not affected by A in any group. Threshold values of all X treated animals before A was 39.3 ± 1.4 mA and after was 37.2 ± 6.3 (group 1) and 40 ± 0 (group 2). Threshold values of all D treated animals before A was 21.0 ± 8.3 and after was 19.4 ± 7.3 (group 3) and 24.8 ± 8.0 (group 4). At the dosages administered intrathecally in this study, X and to a lower degree D induce antinociception without major physiologic changes. Atipamezole up to 0.005 mg kg?1 IV does not affect the resulting antinociception as assessed by electrical stimulation.  相似文献   

11.
Acepromazine, a phenothiazine tranquilizer, causes hypotension in standing horses ( Parry et al. 1982 ). However, a retrospective study ( Taylor & Young 1993 ) showed that acepromazine pre‐anesthetic medication did not affect arterial blood pressure (MAP) in anaesthetized horses. This study examined the effects of acepromazine on MAP during romifidine–ketamine–halothane anaesthesia in horses anaesthetized for various surgical procedures. Forty‐four horses were allocated by block randomization to groups A and B. Group A received acepromazine 0.05 mg kg?1 IM 30 minutes before induction of anaesthesia, group B did not. All horses received romifidine 0.1 mg kg?1 IV 5 minutes before anaesthesia was induced with diazepam 0.05 mg kg?1 and 2.2 mg kg?1 ketamine IV. The horses' trachea were intubated and horses breathed 50% oxygen and 50% nitrous oxide plus halothane (concentration adjusted as required clinically) from a circle breathing system. Nitrous oxide was discontinued after 10 minutes and analgesics, flunixin 1.1 mg kg?1 and either morphine 0.1 mg kg?1 or butorphanol 0.05 mg kg?1 (matched for horses undergoing the same procedure) administered IV. The facial or dorsal metatarsal artery was catheterized for direct measurement of MAP (every 10 min) and withdrawal of blood for gas analysis (every 30 min). The electrocardiogram (ECG) was monitored continuously with a 10 seconds printout obtained every 10 minutes. Intermittent positive pressure ventilation (IPPV) was instigated if PaCO2 exceeded 9.3 kPa (70 mm Hg). Dobutamine was infused (1.0–5.0 kg?1minute?1) if MAP < 58 mm Hg and was continued until MAP > 70 mm Hg. Mean age, weight and duration of anaesthesia were compared between the groups using a t‐test for independent samples. Gender distribution and numbers of horses requiring IPPV or dobutamine were compared between groups using a chi‐squared test (with Yates correction). To compare MAP over time, the area under the curve (MAPAUC) was calculated and compared between groups using a t‐test. Horses receiving dobutamine were excluded from MAPAUC and MAP comparisons. The ECG printouts were examined for arrhythmias. There were no significant differences between groups (p > 0.05). Group A contained three stallions, 10 geldings and nine mares, aged 6.3 years (range 0.75–18). Group B comprised eight stallions, 11 geldings and three mares aged 7.3(1–16) years. Duration of anaesthesia was group A 97 (50–140) minutes, group B 99 (50–160) minutes. Eight horses in group A and three in group B required IPPV. Nine horses in group A and four in group B received dobutamine. Mean arterial pressure ranged from 60 to 128 mm Hg in group A and 58–96 mm Hg in group B. Mean MAPAUC was 5941 mm Hg minute?1 in group A, in B 6000 mm Hg minute?1. Atrial pre‐mature complexes were recorded from one horse in group B. No other arrhythmias were detected. Although MAP was lower in the acepromazine group, this appeared unlikely to cause a clinical problem. The incidence of arrhythmias was too low to determine the influence of acepromazine in this study.  相似文献   

12.

Objective

To compare the effects of controlled mechanical ventilation (CMV) and constant positive end-expiratory pressure (PEEP) and interposed recruitment manoeuvres (RMs) with those of CMV without PEEP on gas exchange during general anaesthesia and the early recovery period.

Study design

Prospective, randomized clinical trial.

Animals

A total of 48 Warmblood horses undergoing elective surgery in lateral (Lat) (n = 24) or dorsal (Dors) (n = 24) recumbency.

Methods

Premedication (romifidine), induction (diazepam and ketamine) and maintenance (isoflurane in oxygen) were identical in all horses. Groups Lat- CMV and Dors-CMV (each n = 12) were ventilated using CMV. Groups Lat-RM and Dors-RM (each n = 12) were ventilated using CMV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths with peak inspiratory pressure of 60 cmH2O, 80 cmH2O and 60 cmH2O, respectively). RMs were applied as required to maintain PaO2 at > 400 mmHg (> 53.3 kPa). Dobutamine was given to maintain mean arterial blood pressure at > 60 mmHg. Physiological parameters were recorded every 10 minutes. Arterial blood gases were measured intra- and postoperatively. Statistical analyses were conducted using analyses of variance (anova), t tests and the Mann–Whitney U-test.

Results

Horses in Dors-RM had higher PaO2 values [478 ± 35 mmHg (63.7 ± 4.6 kPa)] than horses in Dors-CMV [324 ± 45 mmHg (43.2 ± 6 kPa)] during anaesthesia and the early recovery period. There were no differences between horses in groups Lat-CMV and Lat-RM. Other measured parameters did not differ between groups.

Conclusions and clinical relevance

Ventilation with CMV, constant PEEP and interposed RM provided improved arterial oxygenation in horses in dorsal recumbency that lasted into the early recovery period, but had no benefit in horses in lateral recumbency. This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses, especially in dorsal recumbency.  相似文献   

13.
Objective – To evaluate the tolerance of a continuous positive airway pressure (CPAP) mask in tranquilized dogs and compare PaO2 in arterial blood in dogs receiving oxygen with a regular face mask or CPAP mask set to maintain a pressure of 2.5 or 5 cm H2O. Design – Prospective, randomized clinical study. Setting – University teaching hospital. Animals – Sixteen client‐owned dogs without evidence of cardiopulmonary disease were studied. Interventions – Eight animals were randomly assigned to each of 2 treatment groups: group A received 2.5 cm H2O CPAP and group B received 5 cm H2O CPAP after first receiving oxygen (5 L/min) by a regular face mask. Animals were tranquilized with acepromazine 0.05 mg/kg, IV and morphine 0.2 mg/kg, IM. An arterial catheter was then placed to facilitate blood sampling for pHa, PaO2, and PaCO2 determinations before and after treatments. Direct mean arterial pressure, heart rate, respiratory rate, and temperature were also recorded after each treatment. Measurements and Main Results – CPAP administration was well tolerated by all animals. The mean arterial pressure, heart rate, respiratory rate, temperature, PaCO2, and pHa, did not differ at any time point between groups. Differences were seen in oxygenation; in group A, PaO2 significantly increased from a mean of 288.3±47.5 mm Hg with a standard mask to a mean of 390.3±65.5 mm Hg with the CPAP mask and in group B, PaO2 increased similarly from 325.0±70.5 to 425.2±63.4 mm Hg (P<0.05); no differences were detected between the 2 CPAP treatments. Conclusions – In healthy tranquilized dogs noninvasive CPAP is well tolerated and increases PaO2 above values obtained when using a regular face mask.  相似文献   

14.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

15.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

16.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

17.
Objective The purpose of this study was to determine the cardiovascular effects of sevoflurane in calves. Study design Prospective experimental study. Animals Six, healthy, 8–12‐week‐old Holstein calves weighing 80 ± 4.5 (mean ± SEM) kg were studied. Methods Anesthesia was induced by face‐mask administration of 7% sevoflurane in O2. Calves tracheae were intubated, placed in right lateral recumbency, and maintained with 3.7% end‐tidal concentration sevoflurane for 30 minutes to allow catheterization of the auricular artery and placement of a Swan‐Ganz thermodilution catheter into the pulmonary artery. After instrumentation, administration of sevoflurane was temporarily discontinued until mean arterial pressure was > 100 mm Hg. Baseline values were recorded and the vaporizer output increased to administer 3.7% end‐tidal sevoflurane concentration. Ventilation was controlled to maintain normocapnia. The following were recorded at 5, 10, 15, 30 and 45 minutes after collection of baseline data and expressed as the mean value (± SEM): direct systolic, diastolic, and mean arterial blood pressures; cardiac output; mean pulmonary arterial pressure; pulmonary arterial occlusion pressure, heart rate; and pulmonary arterial temperature. Cardiac index and systemic and pulmonary vascular resistance values were calculated using standard formulae. Arterial blood gases were analyzed at baseline, and at 15 and 45 minutes. Differences from baseline values were determined using one‐way analysis of variance for repeated measures with post‐hoc differences between mean values identified using Dunnet's test (p < 0.05). Results Mean time from beginning sevoflurane administration to intubation of the trachea was 224 ± 9 seconds. The mean end‐tidal sevoflurane concentration at baseline was 0.7 (± 0.11)%. Sevoflurane anesthesia was associated with decreased arterial blood pressure at all sampling times. Mean arterial blood pressure decreased from a baseline value of 112 ± 7 mm Hg to a minimum value of 88 ± 4 mm Hg at 5 minutes. Compared with baseline, arterial pH was decreased at 15 minutes. Pulmonary arterial blood temperature was decreased at 15, 30 and 45 minutes. Arterial CO2 tension increased from a baseline value of 43 ± 3 to 54 ± 4 mm Hg (5.7 ± 0.4 to 7.2 ± 0.3 kPa) at 15 minutes. Mean pulmonary arterial pressure was increased at 30 and 45 minutes. Pulmonary arterial occlusion pressure increased from a baseline value of 18 ± 2 to 23 ± 2 mm Hg at 45 minutes. There were no significant changes in other measured variables. All calves recovered from anesthesia uneventfully. Conclusion We conclude that sevoflurane for induction and maintenance of anesthesia was effective and reliable in these calves and that neither hypotension nor decreased cardiac output was a clinical concern. Clinical relevance Use of sevoflurane for mask induction and maintenance of anesthesia in young calves is a suitable alternative to injectable and other inhalant anesthetics.  相似文献   

18.
ObjectiveTo investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.Study designProspective, randomized experimental study.AnimalsTwelve Quarter Horse foals, age of 5.4 ±0.9 months and weighing 222 ± 48 kg.MethodsFoals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute?1 was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (fR), inspired fraction of oxygen (FiO2), and end-tidal carbon dioxide (Pe’CO2) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2)] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO2/FiO2 were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was α = 0.05. All values are presented as least square means ± SE.ResultsValues at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 ± 14.4 mmHg before hoisting to 92 ± 11.6 mmHg after hoisting (p=0.0013). The PaO2/FiO2 ratio decreased from 275 ± 30 to 175 ± 24 (p=0.0055). End-tidal carbon dioxide decreased significantly from 48.7 ± 1.6 to 44.5 ± 1.2 mmHg (p=0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting.Conclusion and clinical relevanceHoisting decreased PaO2 in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO2 measurement is necessary to detect early changes.  相似文献   

19.
ObjectiveTo assess oxygenation, ventilation‐perfusion (V/Q) matching and plasma endothelin (ET‐1) concentrations in healthy horses recovering from isoflurane anaesthesia administered with or without pulse‐delivered inhaled nitric oxide (iNO).Study DesignProspective experimental trial.AnimalsHealthy adult Standardbred horses.MethodsHorses were anaesthetized with isoflurane in oxygen and placed in lateral recumbency. Six control (C group) horses were anaesthetized without iNO delivery and six horses received pulse‐delivered iNO (NO group). After 2.5 hours of anaesthesia isoflurane and iNO were abruptly discontinued, inhaled oxygen was reduced from 100% to approximately 30%, and the horses were moved to the recovery stall. At intervals during a 30‐minute period following the discontinuation of anaesthesia, arterial and mixed venous blood gas values, shunt fraction (Qs/Qt), plasma ET‐1 concentration, pulse rate and respiratory rate were measured or calculated. Repeated measures anova and a Bonferroni post hoc test was used to analyze data with significance set at p <0.05.ResultsAt all time points in the recovery period, NO horses maintained better arterial oxygenation (oxygen partial pressure: NO 13.2 ± 2.7–11.1 ± 2.7 versus C 6.7 ± 1.1–7.1 ± 1.1 kPa) and better V/Q matching (Qs/Qt NO 0.23 ± 0.05–0.14 ± 0.06 versus C 0.48 ± 0.03–0.32 ± 0.08%) than C horses. Mixed venous oxygenation was higher in NO for 25 minutes following the discontinuation of anaesthesia (NO 6.3 ± 0.2–4.5 ± 0.07 versus C 4.7 ± 0.6–3.7 ± 0.3 kPa). In both groups of horses arterial oxygenation remained fairly stable; venous oxygenation declined over this time period in the NO group but still remained higher than venous oxygen in the C group. ET‐1 concentrations were higher at most time points in C than NO. Changes in other parameters were either minor or absent.Conclusions and Clinical RelevanceDelivery of iNO to healthy horses during anaesthesia results in better arterial and venous oxygenation and V/Q matching (as determined by lower Qs/Qt) and lower ET‐1 concentrations throughout a 30‐minute anaesthetic recovery period.  相似文献   

20.
The hemodynamic effects of high arterial carbon dioxide pressure (PaCO2) during anesthesia in horses were studied. Eight horses were anesthetized with xylazine, guaifenesin, and thiamylal, and were maintained with halothane in oxygen (end-tidal halothane concentration = 1.15%). Baseline data were collected while the horses were breathing spontaneously; then the horses were subjected to intermittent positive-pressure ventilation, and data were collected during normocapnia (PaCO2, 35 to 45 mm of Hg), moderate hypercapnia (PaCO2, 60 to 70 mm of Hg), and severe hypercapnia (PaCO2, 75 to 85 mm of Hg). Hypercapnia was induced by adding carbon dioxide to the inspired gas mixture. Moderate and severe hypercapnia were associated with significant (P less than 0.05) increases in aortic blood pressure, left ventricular systolic pressure, cardiac output, stroke volume, maximal rate of increase and decrease in left ventricular pressure (positive and negative dP/dtmax, respectively), and median arterial blood flow, and decreased time constant for ventricular relaxation. These hemodynamic changes were accompanied by increased plasma epinephrine and norepinephrine concentrations. Administration of the beta-blocking drug, propranolol hydrochloride, markedly depressed the response to hypercapnia. This study confirmed that in horses, hypercapnia is associated with augmentation of cardiovascular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号