首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以液体发酵蛹虫草分离得到的发酵液和菌丝体为原料,添加辅料调味,根据其不同的理化性质分别开发蛹虫草产品-虫草饮料、虫草酱,并提出工艺流程和操作要点.该产品营养丰富、成本低廉、口感好、方便食用,符合相关卫生标准.蛹虫草液体发酵技术成熟,发酵周期短,产品制作工艺简单,易于掌握,有较大的市场潜力和发展前景.  相似文献   

2.
采用液体深层培养法,将活化的蛹虫草斜面菌种,经摇瓶培养、发酵罐扩大培养,得到含有蛹虫草有效成分的菌丝体,通过调配、灭菌、接种乳酸菌、发酵等工艺生产蛹虫草酸奶。本工艺比常规蛹虫苹酸奶加工方法具有明显的优势。  相似文献   

3.
以蛹虫草菌丝体生物量为指标,运用单因素对比试验和正交实验,对蛹虫草液体培养基的碳、氮营养源以及最佳配方和培养条件进行了优化研究。结果表明:筛选出蛹虫草液体培养基最佳碳源为蔗糖,其次为麦芽糖;最佳氮源为酵母膏,其次为蛋白胨。筛选出蛹虫草液体培养基适宜配方为:蔗糖3%、酵母膏3%、KH2PO40.1%、MgSO40.15%;液体培养适宜条件的温度为24℃,pH 5.5,接种量为15%,摇瓶转速为140 r/min,发酵罐通气量为1∶1.2~1∶1.6V/(V.min)。  相似文献   

4.
为了获得高产量的蛹虫草菌丝体蛋白,利用高通量液体发酵技术,在菌丝快速生长阶段,通过连续补料方式调节发酵底物,加快菌丝对物料的持续利用,提高菌丝体的生物量及菌丝体蛋白质含量。试验通过对液体发酵参数的研究得出,当发酵液p H为4.10~4.20,发酵液还原糖含量18 mg·m L-1左右,200 L发酵罐连续补液4次(3.5 L/次,含浓氨水96 m L、葡萄糖1 200 g、酵母膏360 g),发酵69 h,获得的菌丝体生物量为2.360g·100-1m L-1,菌丝体蛋白得率达46.5%,菌丝体蛋白含量1.098 g·100-1m L-1;比普通一段式发酵时间缩短3 h,菌丝体蛋白含量提高68.92%。  相似文献   

5.
试验以蛹虫草、猕猴桃为主要原材料,对蛹虫草一猕猴桃保健饮料的生产工艺进行研究,确定出最佳配比。结果表明蛹虫草汁和猕猴桃汁的混合比例为1:5,混合汁添加量20%,白砂糖添加量10%,柠檬酸添加量0.1%,稳定剂CMC添加量0.20%,饮料外观形态、色泽、口感等均为最佳。饮料适合各类人群,并具有保健功能,是具有开发前景的一种新型的天然保健饮品。  相似文献   

6.
蛹虫草膏的研制初报   总被引:2,自引:0,他引:2  
林少娟 《食用菌》2004,26(3):44-45
以蛹虫草深层培养所获得的菌丝体为原料,以普通食用的卡拉胶为载体,将蛹虫草菌丝体与食用的卡拉胶有机结合,所制得的蛹虫草膏产品不仅色、香、味、形俱佳,而且营养丰富、绿色保健、成本低廉、方便食用,是一种受消费者欢迎、销售市场广阔的新型保健食品。  相似文献   

7.
用直径6 cm,高10 cm聚乙烯培养罐固体发酵蛹虫草(Cordyceps militaris),以固体发酵产物中虫草素含量为指标,从16个蛹虫草菌株中筛选出虫草素含量最高的菌株,考察固体发酵该菌株的培养基组成、培养时间、培养基装量、料液比、培养温度、接种量和添加物对虫草素含量的影响,得到了有利于蛹虫草固体发酵产虫草素的培养条件:培养罐装20 g小麦,按小麦干重6%的量分别加入玉米粉和黄豆粉,按料液比1∶1.4(w∶v,以小麦干重为基准)加入营养液(g/L:2.0 K2HPO4·3H2O,0.5 MgSO4·7H2O,16甘氨酸),培养温度为26℃,时间46 d,接种量10%.  相似文献   

8.
以四因素三水平的正交试验设计培养条件,在24℃±1℃,180 r/min条件下,对蛹虫草菌进行液体培养,测定菌丝体干重,得到了最佳菌株是川草SC0341,而最佳液体培养基是麦芽粉培养基、最适pH 6.8、增稠剂羧甲基纤维素的最佳用量为0.45%.并且确定麸皮粒型种可作为试验使用的良好试管菌种.用试验测得的最优条件下所得液体发酵培养基,在培养液中加入6 μ.g/mL的Na2SeO3,蛹虫草菌丝体硒吸收率达39.22%,菌丝体干重(1.00±0.05) g/100 mL.试验收获的蛹虫草菌丝体营养价值高、成本低,为中小食品企业研发功能型保健品添加剂提供了一实验模型.  相似文献   

9.
以蛹虫草菌(Cordyceps militaris)为试材,用单因素试验筛选适宜温度后,利用响应面法优化培养基,最后用优化的条件和培养基进行摇床6d和摇床6d+静置培养10d的液体发酵试验,研究不同培养条件下蛹虫草菌液体发酵后菌丝体产率以及静置培养对虫草素积累量的影响。结果表明:蛹虫草菌适宜温度为25℃,优化培养基为蔗糖4.34%、酵母粉3.06%、硫酸亚铁0.027%、磷酸二氢钾0.2%、硫酸铵0.04%、硫酸镁0.13%、维生素B10.08%、硫酸锌0.06%;摇床6d和摇床6d+静置10d后,发酵液中的菌丝体产率分别为2.568g/100mL和3.389g/100mL,后者菌丝体产率比初始培养基增加了1.73倍,而虫草素积累量分别达到568.329μg/mL和862.893μg/mL,后者比初始培养基中增加了1.56倍。  相似文献   

10.
以2个蛹虫草菌株2014072503-1和2014072301-1为试材,采用高效液相色谱(HPLC)法,分析蛹虫草40d液体发酵过程中其发酵液中的虫草素产量,研究了蛹虫草发酵时间对虫草素产量的影响,旨在确定虫草素开始产生、产量迅速升高、产量最高的3个关键时间点,为下一步对以上时间节点的菌丝样品进行转录组测序分析,进而挖掘与虫草素产量密切相关的候选基因奠定基础。结果表明:2个蛹虫草菌株发酵过程中产虫草素的起始时间点为发酵后3d,迅速升高的时间点是12d,虫草素产量最高的时间点2014072503-1号菌株为发酵后37d,而2014072301-1号菌株为发酵后34d。2014072301-1号菌株发酵产生的虫草素含量高(382.43μg·mL~(-1)),时间短(34d),更适于作为生产虫草素的菌株。  相似文献   

11.
蛹虫草深层发酵产虫草素培养基的优化   总被引:1,自引:0,他引:1  
张楠  黎勇  徐洁  熊茂  周欣  段辉国 《北方园艺》2017,(5):134-141
以蛹虫草(Cordyceps militaris(L.)Link)NS-810为菌种,通过对接种量的考察,探索不同孢子浓度对蛹虫草液体一级种制作效果的影响;通过单次单因子试验和正交实验,优化深层发酵产虫草素的最佳培养基,筛选制备蛹虫草液体一级种和液体发酵生产虫草素的最佳工艺。结果表明:孢子浓度3.0×10~8 cfu·mL~(-1)时制作的母种最适合作为蛹虫草菌种扩大培养中的一级种子液;深层发酵的最佳培养基配方为葡萄糖25g·L~(-1)、土豆100g·L~(-1)、鱼蛋白胨18g·L~(-1)、(NH_4)_2SO_40.8g·L~(-1)、KH_2PO_41.0g·L~(-1)、MgSO_4·7H_2O 0.5g·L~(-1)、蚕蛹粉5.0g·L~(-1)、维生素B118mg·L~(-1)、水1L。优化后虫草素的总产量为1 144.31mg·L~(-1),较基础培养基提高了1.46倍。分别以价格低廉葡萄糖和鱼蛋白胨作为发酵培养基的碳源和有机氮源,利于蛹虫草产业化发酵生产虫草素。  相似文献   

12.
一些真菌和食用菌学者曾对某些真菌和食用菌的同工酶和蛋白质谱带进行了研究,认为可以将它作为鉴别菌株的指标之一,同时认为根据蛋白质电泳图谱的分析技术对冬虫夏草等菌的无性阶段亲缘关系进行探讨,即根据蛋白质区带图谱的相似性在一定程度上可反映其亲缘之间的内在关系。同工酶的研究可以从分子水平反映其遗传特性。我们企图通过研究人工栽培蛹虫草的菌丝体、天然蛹虫草子座上分离的菌丝体和天然蛹虫草子囊抱子分离的菌丝体同工酶和蛋白质电泳图谱的研究,了解其间的亲缘关系。1材料和方法1.1试验材料栽培蛹虫草的菌丝体,菌龄10天,…  相似文献   

13.
为了确定人工栽培蛹虫草最适宜的环境条件,我们开展了不同环境对蛹虫草菌丝体生长影响试验。试验结果表明,制作液体菌种时以刚长满试管的母种最佳,液体培养基最适p H值为7.0,蛹虫草菌丝生长最适温度为15~25℃,子实体原基分化和发育的最适宜温度为17~23℃,子实体生长最适宜湿度为70%~75%,蛹虫草转色和子实体生长最适宜光照强度为700~1100Lx,每d所需补光12h,蛹虫草栽培最适宜通风量为早晚各1次,每次30min。  相似文献   

14.
蛹虫草菌丝体培养特性的研究   总被引:3,自引:0,他引:3  
宋仙妹  常继东 《食用菌》2008,30(3):12-14
从碳源、氮源、碳氮比、微量元素、温度、培养基初始pH值、光照强度等方面探讨了蛹虫草C.M.203菌丝体培养特性。结果表明:最适碳源为玉米粉,最适氮源为黄豆饼粉,最适碳氮比为20:1;K^+、Mg^2+、Zn^2+、Fe^2+、Cu^2+、Ca^2+和VB1对蛹虫草菌丝生长影响不大;最适温度为25℃,最适pH值为7,光照强度对菌丝的生长速度有抑制作用。  相似文献   

15.
将采自长春净月潭的野生蛹虫草进行分离,分离后的蛹虫草菌株进行驯化研究。主要研究了不同培养基配方对蛹虫草菌丝体生长情况的影响,结果表明在培养基配方1上菌丝生长较好。  相似文献   

16.
红曲霉与蛹虫草固体共发酵初步研究   总被引:1,自引:0,他引:1  
周礼红  蒋春玲 《食用菌》2008,30(3):40-42
采用正交试验法优化红曲霉菌株MT305与蛹虫草菌株CM9—26共发酵培养基组分。结果,色价最高的培养基组分是葡萄糖、蛋白胨、CaCl2或KH2PO4,分别是菌株MT305单独发酵和优化前共发酵的3倍和2.5倍;虫草菌素含量最高的培养基组分是可溶性淀粉、NaNO3、CaCl2,是菌株CM9-26单独发酵和优化前共发酵的2.5倍和2.7倍;腺苷含量最高的培养基组分是蔗糖或可溶性淀粉、酵母膏、CaCl2或KH2PO4,是菌株CM9—26单独发酵和优化前共发酵的5.1倍和3.3倍。综合考虑色价、虫草菌素和腺苷3个指标,初步优化的共发酵培养基是大米、可溶性淀粉、NaNO3和CaCl2。  相似文献   

17.
以蛹虫草为试材,通过在培养基中添加不同浓度的锌,利用罗丹明B分光光度法测定菌丝体和子实体锌含量,蒽酮-硫酸法和DNS法测定子实体多糖和还原糖含量,探究了锌对蛹虫草菌丝体、子实体生长和生理活性的影响,以期为富锌蛹虫草培育提供参考依据。结果表明:锌对蛹虫草菌丝体、子实体均有一定的影响,适量浓度促进生长,过高则抑制生长,最适合蛹虫草生长的培养基锌浓度为678 mg·kg-1,该浓度下蛹虫草子实体生长良好无退化现象,干质量出现最大值为3.56 g,多糖含量为7.32%,锌富集率达6.45%。  相似文献   

18.
通过摇瓶液体发酵获得蛹虫草菌丝体,采用脱脂、水提醇沉、去蛋白、脱色素、透析和冷冻干燥等一系列手段提取蛹虫草菌丝体多糖。利用羟基自由基(·OH)、超氧阴离子自由基(O2-·)和1,1—二苯基-2-三硝基苯肼(DPPH)清除实验,评价蛹虫草菌丝体多糖体外抗氧化活性。结果显示,蛹虫草菌丝体多糖对3种自由基均表现出较强的清除效果,其中对DPPH的清除力相对最强。随着浓度上升,其抑制自由基的效果均增强,呈现剂量正相关。该多糖对3种不同自由基抑制作用的IC50值分别为7.01 mg·m L-1、19.90 mg·m L-1和3.51 mg·m L-1。蛹虫草菌丝体多糖表现出良好的体外抗氧化活性。  相似文献   

19.
优化蛹虫草固体发酵菌质工艺以缩短发酵周期,提高有效成分含量,有效节约成本。通过单因素筛选和响应面优化法对碳源、氮源、料液比、小麦装料量、接种量、培养时间和腺苷浓度等培养条件进行优化。结果显示,蛹虫草固体发酵菌质最佳培养方案的小麦装料量为15 g,料液比为1.0∶1.3,接种量为2 mL,培养时间为17 d,营养液碳源为可溶性淀粉、氮源为黄豆粉,腺苷的质量浓度为76 g·L-1。此条件下虫草素含量为3.718mg·g-1,与初始配方相比,含量提高了4.47倍。工艺优化后的蛹虫草菌质固体发酵周期短,有效成分含量提高,研究结果为后期发酵菌质的开发利用奠定了基础。  相似文献   

20.
张园园  王勇  张晶  丁建  李悦 《食用菌》2020,(4):20-23
目的:研究亚硒酸钠对蛹虫草及白化蛹虫草菌丝生长影响。方法:CM-1518、白化蛹虫草CM-Y1518为试验蛹虫草菌株,研究亚硒酸钠(0~700 mg/L)对蛹虫草及白化蛹虫草菌丝长势、菌丝平均长速及菌落形态影响。结果:蛹虫草菌丝硒耐受性高于白化蛹虫草,当培养基中亚硒酸钠质量浓度不超过650 mg/L时,蛹虫草均可生长,硒耐受极值为700 mg/L;当亚硒酸钠质量浓度不超过200 mg/L时,白化蛹虫草均可生长,硒耐受极值为250 mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号