首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments.  相似文献   

2.
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C. violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.  相似文献   

3.
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory. In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals, and microorganisms which possess unique structures and promising antibiotic activities against P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides, and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship (SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant clinical P. aeruginosa isolates and could be considered as lead compounds for future development. Challenges on how to translate hits into useful candidates for clinical development are also proposed and discussed.  相似文献   

4.
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P. aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.  相似文献   

5.
With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV–Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.  相似文献   

6.
Background: Infectious by Pseudomonas aeruginosa has spread worldwide and metallo-beta-lactamases (MBL) are being reported with increasing frequency. The aim of this study was to investigate the antibiotic susceptibility and distribution of blaVIM and blaIMP genes in P. aeruginosa isolates from Zanjan Province of Iran. Methods: A total of 70 P. aeruginosa isolates were identified from patients admitted at intensive care units. The antimicrobial susceptibility was tested by disk diffusion (Kirby-Bauer) method and for production of MBL using double-disk synergy test (DDST). After DNA extraction, the presence of blaVIM and blaIMP genes and class 1 integron were detected by PCR. RESULTS: Most of the isolates were resistant to meropenem, cefotaxime and imipenem (IPM). Also, 44/70 (62.85%) IPM resistant isolates were confirmed by DDST. Of the 44 clinical isolates, 41 (93%) isolates showed MIC≥4 µg/ml for IPM. Based on the DDST results, 36 (87.8%) were confirmed to be MBL producers. PCR amplification showed that 23/41 (56%) carried blaVIM and 10/41 (24.3%) possessed blaIMP gene. Also, 31/44 (70.5%) isolates contained class 1 integron gene. Conclusion: Our results highlight that the genes for Verona integron-encoded metallo-β-lactamase, IPM β-lactamases and class 1 integrons were predominantly present among the IPM-resistant P. aeruginosa tested in our province and also the frequency of blaVIM type is higher than blaIMP. This is the first report of P. aeruginosa strains producing blaIMP with high frequency from Zanjan province of Iran. Key Words: Pseudomonas aeruginosa, Beta-lactamases, PCR  相似文献   

7.
The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors.  相似文献   

8.
External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents.  相似文献   

9.
The organization of bacteria in biofilms is one of the adaptive resistance mechanisms providing increased protection against conventional treatments. Thus, the search for new antibiofilm agents for medical purposes, especially of natural origin, is currently the object of much attention. The objective of the study presented here was to explore the potential of extracts derived from three seaweeds: the green Ulva lactuca, the brown Stypocaulon scoparium, and the red Pterocladiella capillacea, in terms of their antibiofilm activity against P. aeruginosa. After preparation of extracts by successive maceration in various solvents, their antibiofilm activity was evaluated on biofilm formation and on mature biofilms. Their inhibition and eradication abilities were determined using two complementary methods: crystal violet staining and quantification of adherent bacteria. The effect of active extracts on biofilm morphology was also investigated by epifluorescence microscopy. Results revealed a promising antibiofilm activity of two extracts (cyclohexane and ethyl acetate) derived from the green alga by exhibiting a distinct mechanism of action, which was supported by microscopic analyses. The ethyl acetate extract was further explored for its interaction with tobramycin and colistin. Interestingly, this extract showed a promising synergistic effect with tobramycin. First analyses of the chemical composition of extracts by GC–MS allowed for the identification of several molecules. Their implication in the interesting antibiofilm activity is discussed. These findings suggest the ability of the green alga U. lactuca to offer a promising source of bioactive candidates that could have both a preventive and a curative effect in the treatment of biofilms.  相似文献   

10.
A new meroditerpene, sartorypyrone C (5), was isolated, together with the known tryptoquivalines l (1a), H (1b), F (1c), 3′-(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5′]-2,2′-dione (2) and 4(3H)-quinazolinone (3), from the culture of the marine sponge-associated fungus Neosartorya paulistensis (KUFC 7897), while reexamination of the fractions remaining from a previous study of the culture of the diseased coral-derived fungus N. laciniosa (KUFC 7896) led to isolation of a new tryptoquivaline derivative tryptoquivaline T (1d). Compounds 1a–d, 2, 3, and 5, together with aszonapyrones A (4a) and B (4b), chevalones B (6) and C (7a), sartorypyrones B (7b) and A (8), were tested for their antibacterial activity against four reference strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa), as well as the environmental multidrug-resistant isolates. Only aszonapyrone A (4a) and sartorypyrone A (8) exhibited significant antibacterial activity as well as synergism with antibiotics against the Gram-positive multidrug-resistant strains. Antibiofilm assays of aszonapyrone A (4a) and sartorypyrone A (8) showed that practically no biofilm was formed in the presence of their 2× MIC and MIC. However, the presence of a sub-inhibitory concentration of ½ MIC of 4a and 8 was found to increase the biofilm production in both reference strain and the multidrug-resistant isolates of S. aureus.  相似文献   

11.
Ten strains of Pseudomonas aeruginosa (PN1 ˜ PN10) isolated from rhizosphere of chir-pine were tested for their plant growth promontory properties and antagonistic activities against Macrophomina phaseolina in vitro and in vivo. P. aeruginosa PN1 produced siderophore, IAA, cyanogen and solubilized phosphorus, besides producing chitinase and β-1,3-glucanase. In dual culture, P. aeruginosa PN1 caused 69% colony growth inhibition. However, cell free culture filtrate also posed inhibitory effect but to a lesser extent. After 90 days, P. aeruginosa PN1 increased plant growth and biomass in pots trial containing M. phaseolina-infested soil. PN1 showed the strong chemotaxis toward root exudates resulting in effective root colonization. Moreover, increased population in rhizosphere of these bacteria was also recorded after 90 days of treatment. Thus, chemotactic fluorescent P. aeruginosa PN1 exhibited strong antagonistic property against M. phaseolina, suppressed the disease and improved plant growth of the seedlings of chir-pine proving potential biocontrol agent.  相似文献   

12.
One new phenylalanine derivative 4′-OMe-asperphenamate (1), along with one known phenylalanine derivative (2) and two new cytochalasins, aspochalasin A1 (3) and cytochalasin Z24 (4), as well as eight known cytochalasin analogues (5–12) were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12) were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus.  相似文献   

13.
Hemibastadin derivatives, including the synthetically-derived 5,5′-dibromohemibastadin-1 (DBHB), are potent inhibitors of blue mussel phenoloxidase (PO), which is a key enzyme involved in the firm attachment of this invertebrate to substrates and, thus, a promising molecular target for anti-fouling research. For a systematic investigation of the enzyme inhibitory activity of hemibastadin derivatives, we have synthesized nine new congeners, which feature structural variations of the DBHB core structure. These structural modifications include, e.g., different halogen substituents present at the aromatic rings, different amine moieties linked to the (E)-2-(hydroxyimino)-3-(4-hydroxyphenyl)propionic acid, the presence of free vs. substituted aromatic hydroxyl groups and a free vs. methylated oxime group. All compounds were tested for their inhibitory activity towards the target enzyme in vitro, and IC50 values were calculated. Derivatives, which structurally closely resemble sponge-derived hemibastadins, revealed superior enzyme inhibitory properties vs. congeners featuring structural moieties that are absent in the respective natural products. This study suggests that natural selection has yielded structurally-optimized antifouling compounds.  相似文献   

14.
Silver nanoparticles (AgNPs) were attached to glass fiber filters to improve their antibacterial properties using glycidyltrimethylammonium chloride (GTAC), a type of quaternary ammonium salt. The glass fiber filters treated with GTAC were placed into the Ag colloid and heat-treated at 43 °C for 90 min to attach AgNPs to the glass fiber filters. The glass fiber filters with the attached AgNPs were then analyzed by scanning electron microscopy and atomic force microscopy (AFM). The surface morphology of the glass fiber filters treated with GTAC and AgNPs was observed. The Ag atomic % of the glass fiber filters was analyzed according to the GTAC concentration, Ag colloid concentration, and AgNPs treatment temperature. The surface roughness of the glass fiber filters with the attached AgNPs was measured by AFM. The antibacterial tests of the GTAC and AgNP-treated glass fiber filters highlighted the sufficient antibacterial effects against E. coli, S. aureus, and P. aeruginosa. In particular, the antibacterial properties of glass fiber filters against S. aureus and P. aeruginosa were improved when the glass fiber filters were treated with both GTAC and AgNPs.  相似文献   

15.
Previous studies had identified novel antimicrobial peptides derived from witch flounder. In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. Pseudomonas aeruginosa was obtained from otitis media and cholelithiasis patients, while Staphylococcus aureus was isolated from otitis media patients. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4–16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide’s binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC), PC/cholesterol (CH) and PC/sphingomyelin (SM). These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did. Taken together, we found that NRC-16 has potent antimicrobial and antibiofilm activities with less cytotoxicity, and thus can be considered for treatment of microbial infection in the future.  相似文献   

16.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for biomedical applications. The presence of primary amine groups in repeating units of chitosan grants it several properties like antibacterial activity, antitumor activity and so on. Chitosan forms nanoparticles spontaneously on the addition of polyanion tripolyphosphate which has greater antimicrobial activity than parent chitosan. In the present study, chitosan nanoparticles (ChNP) were prepared by the ionic gelation method. The physiochemical characteristics of nanoparticles were analyzed using XRD, SEM, FTIR. The antibacterial activity of chitosan nanoparticles against medical pathogens Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa was evaluated by calculation of minimum inhibitory concentration (MIC) and compared with chitosan and chitin activity. The mode of action and factors affecting antibacterial activity were also analyzed. ChNP compounds exhibited superior antimicrobial activity against all microorganisms in comparison with chitosan and chitin. The antibiofilm activity was studied using crystal violet assay and growth on congo red agar. The study is thus a good demonstration of the applicability of chitosan nanoparticles as an effective antimicrobial agent with antibiofilm activity as well.  相似文献   

17.
The potential development of potato (Solanum tuberosum) as a low-cost eukaryotic system for the production of a commercially valuable enzyme feed supplement was examined. AFibrobacter succinogenes 1,3-1,4-β-glucanase [1,3-1,4-β-D-glucan 4-glucanohydro-lase] gene under the control of the constitutive cauliflower mosaic virus 35S promoter was transferred into the potato cultivar, Desiree. The presence of the β-glucanase cDNA in the plant genome of independent transgenic potato lines was confirmed by PCR and Southern analysis. Northern analysis identified the presence of the β-glucanase mRNA in the leaf tissue of transgenic plants. Furthermore, western analysis showedF. succinogenes β-glucanase accumulations of 0.1% and 0.05% of total soluble protein in the leaves and tubers, respectively. Specific activities of the enzyme in leaves (1693 units mg-1 β-glucanase) and tubers (2978 units mg-1 β-glucanase) were comparable to that previously reported for the enzyme produced in bacteria. Lyophilization of leaves had no effect on the specific activity of the β-glucanase, and only marginally influenced the specific activity of the enzyme expressed in tubers. Relative to the control line (cv. Desiree), tuber yields were significantly reduced by 28%-72% in all lines expressing theF. succinogenes β-glucanase, and microscopy showed that expression of the β-glucanase caused changes in cell wall structure. Results of this study demonstrate that a 1,3-1,4-β-glucanase can be expressed in potato tissues, and that potato plants have the potential to be used for the commercial production of heterologous enzymes.  相似文献   

18.
Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L.  相似文献   

19.
Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections.  相似文献   

20.
To expand the potential of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (southwest Caribbean Sea), we report the anti-microbial profile against four pathogenic microorganisms (Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans) and report a more complete cytotoxic profile against five human cells lines (HeLa, PC-3, HCT116, MCF-7 and BJ) for the compounds PsG, PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-PsK and IMNGD. For the cytotoxic profiles, all compounds evaluated showed moderate and non-selective activity against both tumor and normal cell lines, where PsQ and PsG were the most active compounds (GI50 values between 5.8 μM to 12.0 μM). With respect to their anti-microbial activity the compounds showed good and selective activity against the Gram-positive bacteria, while they did not show activity against the Gram-negative bacterium or yeast. PsU, PsQ, PsS, seco-PsK and PsG were the most active compounds (IC50 2.9–4.5 μM) against S. aureus and PsG, PsU and seco-PsK showed good activity (IC50 3.1–3.8 μM) against E. faecalis, comparable to the reference drug vancomycin (4.2 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号