首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
利用园林绿化废弃物添加磷矿粉,在堆肥前期、后期以及前后期分两次接种复合菌剂进行好氧堆肥,通过抗生素标记、选择性培养基方法,研究堆肥过程功能菌(解磷菌、拮抗菌)的定殖状况,分析堆肥产品的微生物群落功能多样性、解磷效果以及对青枯病菌的拮抗性能。结果表明:堆肥后期和分前后两次接种复合菌剂明显增加堆肥枯草芽孢杆菌、胶质芽孢杆菌功能菌数量,而前期接种经过堆肥高温期,堆体功能菌数量锐减,表明功能菌定殖效果取决于是否后期接种;堆肥后期和分前后两次接种显著提高了堆肥的微生物群落功能多样性、堆肥水溶性磷和有效磷含量以及堆肥对青枯病菌拮抗性能。  相似文献   

2.
饲喂纳豆枯草芽胞杆菌对荷斯坦犊牛瘤胃细菌区系的影响   总被引:3,自引:0,他引:3  
本研究选取8头(60日龄)犊牛随机分为对照组和处理组,对照组犊牛饲喂开食料,处理组在开食料中添加纳豆枯草芽胞杆菌(Bacillus subtilis)(1×10~6 CFU/g日粮)菌液,于断奶后2个月进行屠宰,采集瘤胃食糜构建16S rDNA克隆文库,随机挑取克隆进行测序,对照组16S rDNA克隆文库共有111个克隆,可分为88个操作分类单元;处理组16S rDNA克隆文库中有142个克隆,可分为131个操作分类单元.序列分析和多样性指数分析表明,两组犊牛瘤胃细菌区系多样性存在显著差异.拟杆菌门(Bacteroidetes)和壁厚菌门(Firmicutes)是两克隆文库中主要的代表菌群.对照组和处理组中的拟杆菌门分别占文库中总克隆数的38%和25%,而壁厚菌门分别占47%和57%.与瘤胃球菌相关的克隆在对照组克隆文库中分别占5%,而在处理组文库中分别占10%.RT-PCR结果显示,处理组中白色瘤胃球菌(R.albus)(log_(10)7.7/mL)和黄色瘤胃球菌(R.flavefaciens)(log_(10)8.1/mL)的数量比对照组(分别为log_(10)7.2/mL和log_(10)7.7/mL)分别增加了3倍和2.4倍.研究结果提示,饲喂纳豆枯草芽胞杆菌有助于促进断奶后犊牛瘤胃中细菌区系的建立,促进纤维分解菌群的定植和生长.  相似文献   

3.
[目的]探讨不同盐胁迫生境中接种根际促生细菌(PGPR)对白蜡树根际的作用效果,为明确PGPR对白蜡树耐盐性的改善效果以及盐胁迫环境下PGPR的推广应用提供理论依据。[方法]通过盆栽试验,研究不同盐胁迫(轻度、中度、重度)及其接种阴沟肠杆菌(PGPR)对白蜡树根际生物学特征与生长的影响。[结果]盐胁迫显著降低了白蜡树根际微生物数量、微生物量碳、氮含量和脲酶、多酚氧化酶、过氧化氢酶、蔗糖酶活性,且其降幅随盐胁迫梯度的增加而增大;当接种PGPR后,白蜡树根际微生物数量、微生物量碳、氮含量和脲酶、多酚氧化酶、过氧化氢酶、蔗糖酶活性均呈上升趋势,其中轻度盐胁迫接种PGPR处理的细菌数、放线菌数和微生物总量达最高,分别较对照显著提高14.64%,24.01%和17.04%,而脲酶、多酚氧化酶、蔗糖酶活性与对照差异不显著,但显著高于其他处理。同时,白蜡树的根体积、根系总吸收面积与活跃吸收面积随着盐胁迫程度的加剧呈递减趋势,但接种PGPR后,对应的根系指标均有增加,其中轻度盐胁迫接种PGPR处理的活跃吸收面积显著高于对照15.97%。此外,同对照相比,不同程度盐胁迫均显著降低了白蜡树的地径、株高,而接种PGPR却显著提高了地径、株高,其中轻度盐胁迫接种PGPR处理的地径、株高与对照差异不显著,但显著高于其他处理。[结论]轻度盐胁迫下(盐分含量0.2%)接种阴沟肠杆菌能显著改善白蜡树根际生物学特征,并促进白蜡树生长,其作用效果显著优于中度、重度盐胁迫下接种阴沟肠杆菌。  相似文献   

4.
张亮  盛浩  袁红  段良霞 《土壤通报》2020,(2):358-364
【目的】研究多粘类芽孢杆菌LRS-1生防菌对患疫霉病的辣椒根际土壤细菌多样性的影响。【方法】通过对无病阴性对照(CK)、辣椒疫霉菌阳性处理(PC)和生防菌+辣椒疫霉菌处理(LRS1) 3个处理的盆栽根际土壤样品16S r RNA基因的V3-V4区进行高通量测序,并对下机数据予以相关生物信息学分析,获得了不同处理根际土壤细菌的OTU丰度、Alpha多样性、OTUs分布、群落组成差异以及PCA聚类分析等数据结果。【结果】各处理间的根际土壤细菌群落变化明显,疫霉菌处理明显降低了根际土壤细菌群落的丰富度和多样性,而接种多粘类芽孢杆菌LRS-1则可明显改善根际土壤细菌群落丰富度与多样性;接种LRS-1明显提高了辣椒根际土壤细菌种类组成的相似性,并改善疫霉菌胁迫下的细菌种类组成;各处理的优势物种类群均分布于变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria),但疫霉胁迫条件下Sphingomonadaceae、Clostridiales物种丰度显著降低,而Burkholderiales、Micrococcales等物种丰度显著增加,接...  相似文献   

5.
Soil contamination by heavy metals is a serious environmental problem worldwide,and reduction of heavy metal accumulation in vegetables grown on contaminated land is a matter of urgency.A pot experiment was conducted to study the effects of intercropping with the Cd hyperaccumulators Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions,Ya'an and Chengdu,Sichuan Province,China,on the growth and cadmium (Cd) uptake of eggplant (Solanum melongena L.).The biomass,photosynthetic pigment contents,and activities of antioxidant enzymes of eggplant were enhanced by intercropping.The biomass of eggplant was the highest after intercropping with S.photeinocarpum from Ya'an,but did not differ significantly from that after intercropping with S.nigrum from Chengdu.The shoot Cd content of eggplant was significantly reduced by intercropping with the hyperaccumulators,which ranked as follows:S.nigrum from Chengdu > S.nigrum from Ya'an > S.photeinocarpum from Chengdu > S.photeinocarpum from Ya'an,with the decreases being 19.60%,14.36%,9.66%,and 6.42%,respectively,as compared with the control.The lowest shoot Cd content and translocation factor of eggplant were attained after intercropping with S.nigrum from Chengdu.Therefore,it was feasible to intercrop eggplant with S.nigrum and S.photeinocarpum on Cd-contaminated soil.  相似文献   

6.
A pot experiment was carried out to study the effects of three arbuscular mycorrhizal fungi (AMF), including Glomus intraradices, Glomus constrictum and Glomus mosseae, on the growth, root colonization and Cd accumulation of marigold (Tagetes erecta L.) at Cd addition levels of 0, 5 and 50 mg kg-1 in soil. The physiological characteristics, such as chlorophyll content, soluble sugar content, soluble protein content and antioxidant enzyme activity, of Tagetes erecta L. were also investigated. The symbiotic relationship between the marigold plant and arbuscular mycorrhizal fungi was well established under Cd stress. The symbiotic relationship was reffected by the better physiobiochemical parameters of the marigold plants inoculated with the three AMF isolates where the colonization rates in the roots were between 34.3% and 88.8%. Compared with the non-inoculated marigold plants, the shoot and root biomass of the inoculated marigold plants increased by 15.2%- 47.5% and 47.8%-130.1%, respectively, and the Cd concentration and accumulation decreased. The chlorophyll and soluble sugar contents in the mycorrhizal marigold plants increased with Cd addition, indicating that AMF inoculation helped the marigold plants to grow by resisting Cd stress. The antioxidant enzymes reacted differently with the three AMF under Cd stress. For plants inoculated with G. constrictum and G. mosseae, the activities of superoxide dismutase (SOD) and catalase (CAT) increased with increasing Cd addition, but peroxidase (POD) activity decreased with increasing Cd addition. For plants inoculated with G. intraradices, three of the antioxidant enzyme activities were significantly decreased at high levels of Cd addition. Overall, the activities of the three antioxidant enzymes in the plants inoculated with AMF were higher than those of the plants without AMF inoculation under Cd stress. Our results support the view that antioxidant enzymes have a great influence on the biomass of plants, and AMF can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Tagetes erecta L. from Cd stress.  相似文献   

7.
摘 要:田间试验条件下,研究不同水肥处理对二月兰生长,及其翻压后后茬花生产量和养分累积的变化。结果表明,灌溉和施肥可显著促进二月兰生长。在绿肥季,不论施肥与否,灌溉处理均可显著提高二月兰的生物量和N、P、K养分含量, NPW(绿肥季施氮磷肥和灌溉)和CKW处理(绿肥季不施肥,只进行灌溉处理)的二月兰生物量和N、P、K养分含量分别比相应的未灌溉处理提高了66.47%和63.97%、76.95%和32.36%、88.31%和9.80%、21.71%和15.56%。二月兰翻压的养分还田量为91.04~260.23 kg/hm2,约占花生季化肥总养分的27.59%~78.86%。与冬闲处理(CF)相比,不同施肥和灌溉处理的绿肥翻压均促进了花生产量和养分累积,及土壤养分含量的提高,其中以EN处理的提升效果最明显。周年等养分条件下,花生季35.00%氮和/或42.86%磷肥料前移至绿肥季,可明显促进绿肥养分还田量的增加,后茬花生产量不同程度增加(增幅22.82%~41.18%)。综上,在适量灌溉和施肥条件下,二月兰生物量明显增加,进而促进后茬花生产量增加及养分累积。研究结果可为我国绿肥农田应用及化肥减施提供数据支撑和实践依据。  相似文献   

8.
从山东泰安农田土壤中筛选获得1株固氮能力强的菌株N3,通过形态观察、生理生化特征以及16S rDNA基因序列分析,确定为巨大芽孢杆菌属(Bacillus megaterium),该菌株固氮酶活性达C2H428.33 nmol/(h·ml).温室条件下进行二月兰盆栽试验,设置不接菌对照(CK)、接种巨大芽孢杆菌N3、接种...  相似文献   

9.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

10.
EDTA-enhanced phytoremediation by corn (Zea mays L.) of soil supplemented with 500 mg L?1 lead (Pb) was examined. The chelate EDTA was used in order to increase Pb bioavailability at four levels: 0 (control), 0.5 (low), 1.0 (medium), and 2.5 mmol kg?1 (high). Plants were grown under controlled conditions in a growth-chamber with supplementary light. An EDTA concentration of 5.0 mmol kg?1 was lethal to plants. At high and medium EDTA levels plants grew significantly less than control ones. Lead concentrations in corn leaves increased with increased EDTA levels. Plants subjected to medium EDTA level had the greatest root to shoot Pb translocation. Plants subjected to high EDTA level showed high phosphorus (P) uptake and translocation within plants. Therefore, possibly it was not only Pb that caused toxic effect on plants, but also the high internal concentration of P that in turn could have complexed active Fe.  相似文献   

11.
Although silicon (Si) is not an essential element, it presents a close relationship with the alleviation of heavy‐metal toxicity to plants. This work was carried out to evaluate the effects of Si application to soil on the amelioration of metal stress to maize grown on a contaminated soil amended with Si (0, 50, 100, 150, and 200 mg kg–1) as calcium silicate (CaSiO3). Additionally, the cadmium (Cd) and zinc (Zn) bioavailability as well as their distribution into soil fractions was also studied. The results showed that adding Si to a Cd‐ and Zn‐contaminated soil effectively diminished the metal stress and resulted in biomass increase in comparison to metal‐contaminated soil not treated with Si. This relied on Cd and Zn immobilization in soil rather than on the increase of soil pH driven by calcium silicate application. Silicon altered the Cd and Zn distribution in soil fractions, decreasing the most bioavailable pools and increasing the allocation of metals into more stable fractions such as organic matter and crystalline iron oxides.  相似文献   

12.
Heavy-metal pollution of soils causes many environmental, animal, and human health problems. Phytoextraction of heavy metals from contaminated soils is an effective and economic technique. Humic acids are naturally occurring phenol body polymerisates, which form chelate compounds with heavy metals. In the present study the influence of soil- applied humic, citric, and malic acids on the lead (Pb), cadmium (Cd), and chromium (Cr) uptake from a contaminated soil by canola plant was examined in a greenhouse experiment. The experiment was arranged in factorial design based on randomized complete blocks with three replications. The factors of experiment included three organic acids (humic, citric, and malic acid) as first factor and five concentrations [0, 0.001, 0.002, 0.003, and 0.004 (v/v)] as second factor. The results showed that increase in organic acid concentration significantly increased heavy-metal uptake by canola plant, which accumulated heavy metals in different parts of the plant. In addition, crop growth representing by plant height and plant dry weight as well as seed production significantly decreased. Based on these results, canola can be considered as effective crop for phytoextraction of heavy metals from contaminated soils.  相似文献   

13.
A glasshouse pot experiment was conducted to study the effects of liming on plant growth and zinc (Zn) and cadmium (Cd) accumulation by Sedum plumbizincicola in a heavy-metal-contaminated acidified paddy soil. Lime application significantly increased the soil pH, which reached a maximum of 5.53 after addition of 4.0 g kg?1 lime to soil, about 1.4 units more than that of the control. Sedum plumbizincicola grew larger after lime application but aboveground biomass did not increase significantly with increasing soil pH. Liming significantly reduced shoot Zn and Cd concentrations and uptake except at the lowest lime application rate (0.5 g kg?1 lime to soil). This indicates that S. plumbizincicola can grow well in acidic soil at a soil pH of 4.15, and application of lime did not increase plant heavy-metal extraction. Consequently, it is promising to use this plant for Cd and Zn phytoextraction from agricultural soils polluted with acid and metals.  相似文献   

14.
The effect of inoculation with Glomus clarum, a vesicular-arbuscular mycorrhiza fungus, and alley-cropping on the growth of the cassava cultivar, TMS 30572, was investigated under field conditions in a low nutrient tropical soil. Cassava was grown either interplanted between two hedgerow tree species (alley-cropped) or sole-cropped. Sub-plots were either inoculated with G. clarum or were not inoculated. No effort was made to destroy the indigenous mycorrhizal fungi. Three months after planting, no significant influence of G. clarum inoculation was observed on the growth of roots, shoots or leaf area index (LAI). However, with time, inoculation and system of cropping enhanced these growth parameters. Nine months after planting, the total biomass of alley-cropped cassava was significantly higher than that of inoculated and non-inoculated sole-cropped cassava. Inoculation had led to an increase in the fresh tuber yield of both the alley- and sole-cropped cassava 12 months after planting. The LAI of both alley- and sole-cropped cassava inoculated with G. clarum increased. Received: 6 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号