首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between two water-retention parameters, the scaling parameter related to the inverse of the air-entry pressure (αvG, cm-1) and the curve shape factor related to soil pore-size distribution (n) of the van Genuchten water-retention equation, and soil texture (sand, silt, and clay contents) were examined at multiple scales. One hundred twenty-eight undisturbed soil samples were collected from a 640-m transect located in Fuxin, China. Soil water-retention curves were measured and the van Genuchten parameters were obtained by curve fitting. The relationships between the two parameters and soil texture at the observed scale and at multiple scales were evaluated using Pearson correlation and joint multifractal analyses, respectively. The results of Pearson correlation analysis showed that the parameter αvG was significantly correlated with sand, silt, and clay contents at the observed scale. Joint multifractal analyses, however, indicated that the parameter αvG was not correlated with silt and sand contents at multiple scales. The parameter n was positively correlated with clay content at multiple scales. Sand content was significantly correlated with the parameter n at the observed scale but not at multiple scales. Clay contents were strongly correlated to both water-retention parameters because clay content was relatively low in the soil studied, indicating that water retention was dominated by clay content in the field of this study at all scales. These suggested that multiple-scale analyses were necessary to fully grasp the spatial variability of soil water-retention characteristics.  相似文献   

2.
中国土壤氮含量、空间格局及其环境控制   总被引:4,自引:0,他引:4  
Soil holds the largest nitrogen (N) pool in terrestrial ecosystems, but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau. China's soil N storage at a depth of one meter was estimated at 7.4 Pg, with an average density of 0.84 kg m^-2. Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country. Soil N density increased from the arid to semi-arid zone in northern China, and decreased from cold-temperate to tropical zone in the eastern part of the country. An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation, which explained 75.4% of the total variance.  相似文献   

3.
Understanding how spatial scale inffuences commonly-observed effiects of climate and soil texture on soil organic carbon (SOC) storage is important for accurately estimating the SOC pool at different scales. The relationships among climate factors, soil texture and SOC density at the regional, provincial, city, and county scales were evaluated at both the soil surface (0-20 cm) and throughout the soil profile (0-100 cm) in the Northeast China uplands. We examined 1022 profiles obtained from the Second National Soil Survey of China. The results indicated that the relationships between climate factors and SOC density generally weakened with decreasing spatial scale. The provincial scale was optimal to assess the relationship between climate factors and SOC density because regional differences among provinces were covered up at the regional scale. However, the relationship between soil texture and SOC density had no obvious trend with increasing scale and changed with temperature. There were great differences in the impacts of climate factors and soil texture on SOC density at different scales. Climate factors had a larger effect on SOC density than soil texture at the regional scale. Similar trends were seen in Heilongjiang and eastern Inner Mongolia at the provincial scale. But, soil texture had a greater effect on SOC density compared with climate factors in Jilin and Liaoning. At the city and county scales, the inffuence of soil texture on SOC density was more important than climate factors.  相似文献   

4.
Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.  相似文献   

5.
鄂尔多斯高原脉冲降雨对油蒿灌丛群落土壤碳排放的影响   总被引:1,自引:1,他引:0  
Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such water-limited ecosystems, pulsed water inputs directly control the belowground processes through a series of soil drying and rewetting cycles. To investigate the effects of sporadic addition of water on soil CO2 efflux, an artificial precipitation event (3 mm) was applied to a desert shrub ecosystem in the Mu Us Sand Land of the Ordos Plateau in China. Soil respiration rate increased 2.8-4.1 times immediately after adding water in the field, and then it returned to background level within 48 h. During the experiment, soil CO2 production was between 2 047.0 and 7 383.0 mg m-2. In the shrubland, soil respiration responses showed spatial variations, having stronger pulse effects beneath the shrubs than in the interplant spaces. The spatial variation of the soil respiration responses was closely related with the heterogeneity of soil substrate availability. Apart from precipitation, soil organic carbon and total nitrogen pool were also identified as determinants of soil CO2 loss in desert ecosystems.  相似文献   

6.
A field experiment was conducted at Kezuohouqi County, Inner Mongolia Autonomous Region of China, which was located on the southeastern edge of the Horqin Sandy Land, to study the spatial variability of soil nutrients for a small-scale, nutrient-poor, sandy site in a semi-arid region of northern China; to investigate whether or not there were "islands of fertility" at the experimental site; and to determine the key nutrient elements that sustained ecosystem stability. Results obtained from geostatistical analysis indicated that the spatial distribution pattern of soil total nitrogen (STN) was far different from those of soil organic matter (SOM), total phosphorus (STP), and total potassium (STK). Compared to SOM, STP, and STK, STN had a lower structural heterogeneity ratio and a longer range, while other elements were all similar. In addition, STN had an isotropic spatial structure, whereas the others had an anisotropic spatial structure. The spatial structure patterns of herbage species, cover, and height also differed, indicating that spatial variability was subjected to different ecological factors. Differences in the spatial variability patterns among soil nutrients and vegetation properties showed that soil nutrients for a small-scale were not the primary limiting factors that influenced herbage spatial distribution patterns. Incorporating spatial distribution patterns of tree species, namely, Pinus sylvestris var. mongolica Litv. and shrub Lespedeza bicolor Turcz. in a research plot and using fractal dimension, SOM, STP, and STK were shown to contribute to the "islands of fertility" phenomenon, however STN was not, possibly meaning that nitrogen was a key limiting element. Therefore, during restoration of similar ecosystems more attention should be given to soil nitrogen.  相似文献   

7.
草覆盖影响了沙地土壤的水文物理学参数和水流的异质性   总被引:2,自引:0,他引:2  
Vegetation cover has a major effect on water flow in soils.Two sites,separated by distance of about 50 m,were selected to quantify the influence of grass cover on hydrophysical parameters and heterogeneity of water flow in a sandy soil emerging during a heavy rain following a long hot,dry period.A control soil(pure sand)with limited impact of vegetation or organic matter was obtained by sampling at 50 cm depth beneath a glade area,and a grassland soil was covered in a 10 cm thick humic layer and colonised by grasses.The persistence of water repellency was measured using the water drop penetration time test,sorptivity and unsaturated hydraulic conductivity using a mini disk infiltrometer, and saturated hydraulic conductivity using a double-ring infiltrometer.Dye tracer experiments were used to assess the heterogeneity of water flow,and both the modified method for estimating effective cross section and an original method for assessing the degree of preferential flow were used to quantify this heterogeneity from the images of dyed soil profiles.Most hydrophysical parameters were substantially different between the two surfaces.The grassland soil had an index of water repellency about 10 times that of pure sand and the persistence of water repellency almost 350 times that of pure sand. Water and ethanol sorptivities in the grassland soil were 7% and 43%,respectively,of those of the pure sand.Hydraulic conductivity and saturated hydraulic conductivities in the grassland soil were 5% and 16%of those of the pure sand, respectively.Dye tracer experiments revealed a stable flow with"air-draining"condition in pure sand and well-developed preferential flow in grassland soil,corresponding to individual grass tussocks and small micro-depressions.The grassland soil was substantially more water repellent and had 3 times the degree of preferential flow compared to pure sand.The results of this study reinforce our view that the consequences of any change in climate,which will ultimately influence hydrology,will be markedly different between grasslands and bare soils.  相似文献   

8.
The responses of soil microbes to global warming and nitrogen enrichment can profoundly affect terrestrial ecosystem functions and the ecosystem feedbacks to climate change. However, the interactive effect of warming and nitrogen enrichment on soil microbial community is unclear. In this study, individual and interactive effects of experimental warming and nitrogen addition on the soil microbial community were investigated in a long-term field experiment in a temperate steppe of northern China. The field experiment started in 2006 and soils were sampled in 2010 and analyzed for phospholipid fatty acids to characterize the soil microbial communities. Some soil chemical properties were also determined. Five-year experimental warming significantly increased soil total microbial biomass and the proportion of Gram-negative bacteria in the soils. Long-term nitrogen addition decreased soil microbial biomass at the 0-10 cm soil depth and the relative abundance of arbuscular mycorrhizal fungi in the soils. Little interactive effect on soil microbes was detected when experimental warming and nitrogen addition were combined. Soil microbial biomass positively correlated with soil total C and N, but basically did not relate to the soil C/N ratio and pH. Our results suggest that future global warming or nitrogen enrichment may significantly change the soil microbial communities in the temperate steppes in northern China.  相似文献   

9.
基于土壤电导率时空变异性的管理分区技术研究   总被引:2,自引:0,他引:2  
LI Yan  SHI Zhou  LI Feng 《土壤圈》2007,17(2):156-164
A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device to assess the spatial variability and temporal stability of the distribution of soil electrical conductivity (EC), to identify the management zones using cluster analysis based on the spatiotemporal variability of soil EC, and to evaluate the probable potential for sitespecific management in coastal regions with conventional statistics and geostatistical techniques. The results indicated high coefficients of variation for topsoil salinity over all the three samplings. The spatial structure of the salinity variability remained relatively stable with time. Kriged contour maps, drawn on the basis of spatial variance structure of the data, showed the spatial trend of the salinity distribution and revealed areas of consistently high or consistently low salinity, while a temporal stability map indicated stable and unstable regions. On the basis of the spatiotemporal characteristics, cluster analysis divided the site into three potential management zones, each with different characteristics that could have an impact on the way the field was managed. On the basis of the clearly defined management zones it was concluded that coastal saline land could be managed in a site-specific way.  相似文献   

10.
The patterns of soil nitrogen(N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N,and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were:i) to investigate the patterns of soil N content and natural abundance of 15N(δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest,meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and δ15N values(0–40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem,while variations of soil δ15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow,lowland meadow,and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm,and then decreased with increasing precipitation across all other ecosystems. Moreover,the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values(0–40 cm) increased with an increase in soil silt and clay contents. Furthermore,a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive(C/N 11) and negative(C/N 11) parts,which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations,being strongly controlled by precipitation and temperature,were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.  相似文献   

11.
古尔班通古特沙漠土壤化学性质空间异质性的尺度特征   总被引:4,自引:2,他引:2  
李从娟  李彦  马健 《土壤学报》2011,48(2):302-310
从根际(10-3m~10-2m)、个体(10-1m~100m)、种群(100m~101m)、地貌(101m~102m)和区域(103m~104m)五个作用因子所在的尺度对古尔班通古特沙漠土壤的pH、电导率、有机质、全氮、速效氮、全磷和速效磷的空间异质性进行了研究,结果表明,土壤pH在各尺度异质性的大小顺序为:个体>种群>地貌>区域>根际,说明引起土壤pH变化的主要因子是植物个体和种群,而地貌状况、气候及水文对于土壤pH的影响不大,根际对土壤pH的影响最小。土壤电导率在各尺度异质性的大小顺序为:个体>区域>种群>地貌>根际,说明植物个体对于改变土壤盐分含量起主导作用,地貌状况和根际对土壤盐分状况的影响很小。土壤有机质、全氮、速效氮和速效磷的空间异质性均在个体尺度上最大,地貌尺度上次之,而种群尺度上最小,说明植物个体对于土壤养分的空间异质性起主导作用,地貌对这些养分的异质性作用也是不容忽视的,而植物种群对土壤养分的异质性最小。土壤全磷的异质性则在地貌尺度最大,个体尺度次之,根际尺度最小,说明地貌特征是影响土壤全磷含量的主要因子,其次是植物个体,而根际对于土壤全磷的影响很小。  相似文献   

12.
Soil erosion is a serious problem in the Loess Plateau of China, and assessment of soil erosion at large watershed scale is urgently need. This study used RUSLE and GIS to assess soil loss in the Yanhe watershed. All factors used in the RUSLE were calculated for the watershed using local data. RUSLE‐factor maps were made. The mean values of the R‐factor, K‐factor, LS‐factor, C‐factor and P‐factor were 970 209 MJ km−2 h−1 a−1, 0·0195 Mg h MJ−1 mm−1, 10·27, 0·33359 and 0·2135 respectively. The mean value of the annual average soil loss was found to be 14 458 Mg km−2 per year, and the soil loss rate in most areas was between 5000 and 20 000 Mg km−2 per year. There is more erosion in the centre and southeast than in the northwest of Yanhe watershed. Because of the limitations of the RUSLE and spatial heterogeneity, more work should be done on the RUSLE‐factor accuracy, scale effects, etc. Furthermore, it is necessary to apply some physical models in the future, to identify the transport and deposition processes of sediment at a large scale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
基于电磁感应仪的黄河三角洲地区土壤盐分时空变异特征   总被引:7,自引:1,他引:6  
针对黄河下游三角洲土壤盐渍化的空间复杂性与发生反复性,运用磁感式大地电导率仪EM38及其移动测定系统,结合GIS与地统计学方法,对该地区典型地块两个关键季节土壤盐分的时空变异特征进行了分析.结果表明,土壤表观电导率与盐分呈极显著相关性;各时段土壤盐分都表现出多层次空间结构的复合尺度效应,且短程变异构成了土壤盐分空间异质性的最主要部分;土地利用方式差异使得秋季时段土壤盐分呈弱各向异性,地形因素导致春季时段土壤盐分各向异性比在全步长域波动,但在整个研究尺度上仍为各向同性.空间分析表明,结构性因素主导了土壤盐分空间分布格局,随机性因素是加快该分布格局形成的重要因素;春季时段研究区总体表现出积盐趋势,且盐分变动幅度主要集中在10.0g/kg范围内.电磁感应仪与GIS的结合运用为不同尺度土壤调查与质量评价提供了新的途径,并为农业水土资源的决策管理提供指导.  相似文献   

14.
High spatial variability of soil salinity in coastal reclamation regions makes it difficult to obtain accurate scale-dependent information. The objectives of this study were to describe the spatial patterns of saline-sodic soil properties (using soil pH, electrical conductivity (EC1:5) and sodium ion content (SIC) as indicators) and to gain knowledge of the scaling relationships between those variables. The soil pH, EC1:5 and SIC data were measured at intervals of 285 m along a 13,965-m temporal transect in a coastal region of China. The spatial variability of soil pH was weak but it was strong for soil EC1:5 and SIC at the measurement scale. There was a significant positive correlation between soil EC1:5 and SIC, while correlations between soil pH and either EC1:5 or SIC were weak and negative. For each saline-sodic soil parameter, the variability changed with the decomposition scales. The high-variance area at the larger scales (≥570 m) occupied less than 10% of the total area in the local wavelet spectrum, which meant that the spatial variations of the salinity indicators were insignificant at these scales. For local wavelet coherency, at a scale of 1500–2800 m and a sampling distance of 0–4500 m, the covariance was statistically significant between any two of the saline-sodic soil parameters.  相似文献   

15.
Soil erosion is a major environmental problem in China. Planning for soil erosion control requires accurate soil erosion rate and spatial distribution information. The aim of this article is to present the methods and results of the national soil erosion survey of China completed in 2011. A multi-stage, unequal probability, systematic area sampling method was employed. A total of 32,948 sample units, which were either 0.2–3 km2 small catchments or 1 km2 grids, were investigated on site. Soil erosion rates were calculated with the Chinese Soil Loss Equation in 10 m by 10 m grids for each sample unit, along with the area of soil loss exceeding the soil loss tolerance and the proportion of area in excess of soil loss tolerance relative to the total land area of the sample units. Maps were created by using a spatial interpolation method at national, river basin, and provincial scales. Results showed that the calculated average soil erosion rate was 5 t ha−1 yr−1 in China, and was 18.2 t ha−1 yr−1 for sloped, cultivated cropland. Intensive soil erosion occurred on cropland, overgrazing grassland, and sparsely forested land. The proportions of soil loss tolerance exceedance areas of sample units were interpolated through the country in 250 m grids. The national average ratio was 13.5%, which represents the area of land in China that requires the implementation of soil conservation practices. These survey results and the maps provide the basic information for national conservation planning and policymaking.  相似文献   

16.
Soil respiration is an important component of terrestrial carbon cycling and can be influenced by many factors that vary spatially. This research aims to determine the extent and causes of spatial variation of soil respiration, and to quantify the importance of scale on measuring and modeling soil respiration within and among common forests of Northern Wisconsin. The potential sources of variation were examined at three scales: [1] variation among the litter, root, and bulk soil respiration components within individual 0.1 m measurement collars, [2] variation between individual soil respiration measurements within a site (<1 m to 10 m), and [3] variation on the landscape caused by topographic influence (100 m to 1000 m). Soil respiration was measured over a two-year period at 12 plots that included four forest types. Root exclusion collars were installed at a subset of the sites, and periodic removal of the litter layer allowed litter and bulk soil contributions to be estimated by subtraction. Soil respiration was also measured at fixed locations in six northern hardwood sites and two aspen sites to examine the stability of variation between individual measurements. These study sites were added to an existing data set where soil respiration was measured in a random, rotating, systematic clustering which allowed the examination of spatial variability from scales of <1 m to 100+ m. The combined data set for this area was also used to examine the influence of topography on soil respiration at scales of over 1000 m by using a temperature and moisture driven soil respiration model and a 4 km2 digital elevation model (DEM) to model soil moisture. Results indicate that, although variation of soil respiration and soil moisture is greatest at scales of 100 m or more, variation from locations 1 m or less can be large (standard deviation during summer period of 1.58 and 1.28 μmol CO2 m−2 s−1, respectively). At the smallest of scales, the individual contributions of the bulk soil, the roots, and the litter mat changed greatly throughout the season and between forest types, although the data were highly variable within any given site. For scales of 1-10 m, variation between individual measurements could be explained by positive relationships between forest floor mass, root mass, carbon and nitrogen pools, or root nitrogen concentration. Lastly, topography strongly influenced soil moisture and soil properties, and created spatial patterns of soil respiration which changed greatly during a drought event. Integrating soil fluxes over a 4 km2 region using an elevation dependent soil respiration model resulted in a drought induced reduction of peak summer flux rates by 37.5%, versus a 31.3% when only plot level data was used. The trends at these important scales may help explain some inter-annual and spatial variability of the net ecosystem exchange of carbon.  相似文献   

17.
《土壤圈》2006,16(1):1-9
Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatio-temporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a “scale unit” to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg−1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg−1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g−1 dry soil h−1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g−1 dry soil h−1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity.  相似文献   

18.
杨奇勇  杨劲松  姚荣江 《土壤》2011,43(6):998-1003
针对目前黄淮海平原盐渍土改良区存在的土壤盐渍障碍问题,以该区域典型县域禹城市为研究对象,综合运用GIS和非参数地质统计学的指示克立格法,对县级和镇级两个采样尺度下0~20 cm耕层土壤盐分的空间变异性进行了分析,并给出了土壤盐分满足一定条件的概率分布图.结果表明,两个采样尺度下土壤盐分均不符合正态分布且都存在特异值,但...  相似文献   

19.
Understanding the watershed-scale spatial distribution of soil salinity and its compositions is important for soil management. Here, we present the first study on the Manas River watershed in northwest China. In this study, we took soil samples in upper 20 cm of soil from 186 locations across the watershed and measured total salt concentration (TSC), salt ion composition and soil particle size distribution (PSD). We found that on average topsoil TSC tended to increase, from 3.55 g kg−1 in upstream regions to 19.40 g kg−1 in downstream regions. The stoichiometric analysis showed that the equivalence ratio of soil Cl- to SO42− increased from 0.53 in upstream regions to 2.12 in midstream regions, and further to 3.76 in downstream regions; thus, the soil types were classified into chloride–sulfate, sulfate–chloride and chloride soils types, respectively. Additionally, proportions of small (<2 μm in diameter) and large (>2,000 μm) soil particles increased, while that of medium sizes (2–50 μm) decreased from upstream to downstream, with an increasing coefficient of variance (CV) in PSD. Taken together, watershed-scale topsoil salinity may be horizontally characterized by increased TSC and Na+ & Cl proportions, greater equivalence ratio of Cl vs. SO42− and more balanced distribution of PSD along with surface water flow. Results demonstrated that soil salinity and its ions compositions showed a great variation across the watershed scale, suggesting that soil management may consider the spatial heterogeneity of saline–alkaline soil types, and our results provided scientific guidance for local soil management and restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号