首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the components of the water balance - evaporation, transpiration and deep drainage - would be beneficial for targeting productivity improvements for irrigated forages in northern Victoria. We aimed to estimate these components using a simple water balance and the dual crop coefficients provided in FAO-56. Soil water deficits from a field experiment, comparing the water use of six border-check and one spray irrigated forage system, agreed well with the modelled values, except for alfalfa where irrigation intake was restricted. About 85% of the water applied to perennial forages (perennial ryegrass/white clover, tall fescue/white clover and alfalfa) was used for transpiration, 10% for evaporation and 5% was lost as drainage below the root zone. Evaporation was highest from the double-cropped (oats/millet) system (30%) and was 5-25% of the water used by winter-growing annual pastures (Persian clover/Italian ryegrass and both border-check and spray irrigated subterranean clover/Italian ryegrass). The high proportion of water used as transpiration by the perennial forages was due to their high ground cover maintained throughout the year. When compared over similar seasonal conditions, actively growing forages used similar amounts of water, indicating that any increases in water productivity will be mainly due to higher production and/or to matching the growing season of the forage to periods of lower potential evapotranspiration.  相似文献   

2.
The amount of water used by any crop largely depends on the extent to which the soil water depletion from the root zone is being recharged by appropriate depth of irrigation. To test this hypothesis a field study was carried out in November–March of 2002–2003 and 2003–2004 on a sandy loam (Aeric haplaquept) to quantify the effect of depth of irrigation applied through micro-sprinklers on onion (Allium cepa L.) bulb yield (BY) and water use patterns. Seven irrigation treatments consisted of six amounts of sprinkler applied water relative to compensate crop (Kc) and pan (Kp) coefficient-based predicted evapotranspiration loss from crop field (ETp) (i) 160% of ETp (1.6ETp); (ii) 1.4ETp; (iii) 1.2ETp; (iv) 1.0ETp; (v) 0.8ETp; (vi) 0.6ETp; (vii) 40 mm of surface applied water whenever cumulative pan evaporation equals to 33 mm. Water use efficiency (WUE), net evapotranspiration efficiency (WUEET) and irrigation water use efficiency (WUEI) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) of onion were calculated using the relationship between BY and measured actual evapotranspiration (ETc). Yield increased with increasing sprinkler-applied water from 0.6 to 1.4ETp. Relative to the yield obtained at 0.6ETp, yield at 1.0ETp increased by 23–25% while at 1.4ETp it was only 3–9% greater than that at 1.0ETp. In contrast, yield at 1.6ETp was 9–12% less than that at 1.4ETp. Maximum WUE (7.21 kg m−3) and WUEET (13.87 kg m−3) were obtained under 1.0ETp. However, the highest WUEI (3.83 kg m−3) was obtained with 1.2ETp. The ETc associated with the highest WUE was 20% less than that required to obtain the highest yields. This study confirmed that critical levels of ETc needed to obtain maximum BYs, or WUE, could be obtained more precisely from the knowledge of MWUE and EWP.  相似文献   

3.
The effects of pre-anthesis water deficit and cycle length were examined in Papaver somniferum L., cultivated for alkaloid production, in two locations in southern Spain. The vegetative period was shortened by extending the photoperiod through supplemental lighting in the field, while water deficit in pre-anthesis was induced by avoiding irrigations and installing rain shelters. The treatments were: IN (irrigated-normal photoperiod), IL (irrigated-hastened flowering), DN (water deficit in pre-anthesis-normal photoperiod) and DL (water deficit in pre-anthesis and hastened flowering). The artificial photoperiod hastened the flowering by 15 and 21 days, for irrigated and deficit treatments respectively. Seasonal evapotranspiration (ET) ranged from 398 (DN) to 505 mm (IN). There was evidence of root water uptake deeper than 1.5 m. Stomatal conductance was reduced (16%) during water stress, and did not recover in post-anthesis after resuming irrigation. Head yields (capsule + seeds + 7 cm stem) ranged between 3.8 and 4.3 t ha−1; water deficit and short vegetative period both reduced the biomass accumulated, although the effect on yields in these treatments was counterbalanced by a higher harvest index. Early flowering had a detrimental effect on alkaloid concentration in the capsule. Alkaloids yield ranged between 27 and 37 kg ha−1. Water use efficiency (WUE) ranged between 0.78 and 0.96 kg m−3 ET for yield and between 63.4 and 73.7 g m−3 ET for alkaloids. Water stress increased slightly the Water Use Efficiency. A shorter vegetative phase had no effect on WUE for biomass or yield, but decreased the WUE for alkaloids production.  相似文献   

4.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

5.
Frequency and depth of irrigation play crucial role in crop yield and use efficiency of water resource. To test this hypothesis a field study was carried out in November to January of 2001-2002 to 2003-2004 on a sandy loam (Aeric haplaquept) for quantifying the frequency and depth of irrigation on growth, curd yield (CY) and water use pattern of cauliflower (Brassica oleracea L. var. botrytis). Four irrigation frequencies depending on the attainment of cumulative pan evaporation (CPE) values of: 25 (CPE25), 31(CPE31), 38 (CPE38) and 45 (CPE45) mm were placed in main-plots, with three depth of irrigation (IW) of 35 (IW35), 30 (IW30) and 25 (IW25) mm in sub-plots. Water use efficiency (WUE), net evapotranspiration efficiency (WUEET) and irrigation water use efficiency (WUEI) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) were calculated using the relationship between CY and seasonal actual evapotranspiration (SET). A continuous increasing trend in growth parameters, yield and WUEI was recorded with the increase in SET from CPE45-IW25 to CPE31-IW30. However with further increase in SET the same decreased up to CPE25-IW35 regime. Highest WUE and WUEET obtained under CPE38-IW35 regime where SET value was 5% lower than the status of SET under CPE31-IW30. This study confirmed that critical levels of SET needed to obtain maximum curd yield or WUE, could be obtained more precisely from the knowledge of MWUE and EWP.  相似文献   

6.
Current agronomic practices for potato production in the irrigated areas of southern Alberta involve a hill/furrow configuration that was adopted from elsewhere, and designed to shed rainfall away from the hill and into the furrow. However, the principal intent of supplemental irrigation is to capture as much of the applied water into the hill, where the potato tubers and roots are located, and minimize water accumulating in the furrow. A three-year project began in 2006 to quantify the potential irrigation water savings of altered hill shapes for potato production. The three treatments (standard hill, flat-topped hill, and double-planted wide-bed) were arranged in a randomized strip plot design replicated four times. Soil water in each treatment was generally kept between 60 and 90% of available. A fourth treatment, triple-planted wide bed, was added to the project in 2008. The irrigation requirements to maintain the treatments were 487, 442, and 449 mm for the standard hill, flat-topped hill, and double-planted bed, respectively, in 2006 and 442, 408 and 411 mm for the same treatments in 2007. This translates into approximately 10% less irrigation water required for the flat-topped hill shape compared to the standard hill shape. The flat-topped hill shape required 5.0% more irrigation than the standard hill in 2008, but the double and triple-planted wide beds required 8.0 and 9.9%, respectively, less irrigation water than the standard. Although not always statistically significant, water use efficiency was greater in all years for the altered bed shapes compared to the standard hill geometry. Greater water use efficiency can be interpreted as more of the applied water infiltrated into the hill, where the potato plant could use it for transpiration and tuber development. Total yield was greater in 2006 for both the flat-topped hill (72.3 Mg ha−1) and wide-bed hill (69.2 Mg ha−1) compared to the standard hill (61.4 Mg ha−1); however, the treatments were not significantly different. Significantly greater marketable yield was realized from the flat-topped hill treatment in 2006. This treatment also had a significantly greater number of marketable size tubers. In 2007, there were no significant differences in total yield; however, the standard and flat-topped treatments had a significantly greater number and yield of tubers in the 113-170 g size category. Significant differences in total yield were found in 2008. The triple-planted wide bed had significantly greater yield in the smaller size categories compared to the standard treatment and significantly greater total tuber numbers than the other treatments, but the increase was in the smaller size categories, less than 170 g. There were no significant differences among the treatments in yield or total number of tubers in the size categories greater than 171 g in 2008.  相似文献   

7.
With a population of more than 150 million, Pakistan cannot meet its need for food, if adequate water is not available for crop production. Per capita water availability has decreased from 5600 m3 in 1947 to 1000 m3 in 2004. Water table has gone down by more than 7 m in most parts of the country. Present need is to identify and adopt measures, that will reduce water use and increase crop production. This study was conducted in farmers’ fields during 2002–2004 to evaluate the water use efficiency and economic viability of sprinkler irrigation system for growing rice and wheat crops. Yields and water use were also measured on adjacent fields irrigated by basin flooding, which were planted with the same crop varieties. Sprinkler irrigation of rice produced 18% more yield, while reducing consumption of water to 35% of that used in the traditional irrigation system. Sprinkler irrigation of wheat resulted in a water use efficiency of 5.21 kg of grain per cubic meter of water used compared to 1.38 kg/m3 in the adjacent flooded basins. Benefit–cost analysis showed that adoption of rain-gun sprinkler irrigation for rice and wheat is a financially viable option for farmers. While these findings show large potentials for improving water use efficiency in crop production they also indicate that a large portion of the water applied in traditional flooded basin irrigation is going to groundwater recharge, which has high value near large cities which draw their water from the aquifer.  相似文献   

8.
近34年玛纳斯河流域棉花生长和耗水特征研究   总被引:3,自引:0,他引:3  
利用1980—2013年北疆玛纳斯河流域乌兰乌苏农业气象站长期的农气观测实验资料,对3个典型棉花种植时期:裸地沟灌(NF,1980—1993年)、覆膜沟灌(MF,1994—2004年)以及膜下滴灌时期(MD,2005—2013年)的棉花生长和耗水特征进行对比研究。结果表明:在充分灌溉的条件下,棉花籽粒产量主要受温度影响,而蒸散量的变化与灌水量有关。近34年,该站棉花籽棉产量和棉田蒸散量均呈增加趋势,每年籽棉产量的增加率大于蒸散量的增加率,棉田水分利用效率(WUE)和灌溉水利用效率(IWUE)也随之呈增加趋势。MD时期的WUE和IWUE值最大,分别为(0.7±0.1)、(1.0±0.3)kg/m3,在我国和世界其他干旱、半干旱棉花产区均处于较高水平。  相似文献   

9.
Accurate crop development models are important tools in evaluating the effects of water deficits on crop yield or productivity and predicting yields to optimize irrigation under limited available water for enhanced sustainability and profitable production. Food and Agricultural Organization (FAO) of United Nations addresses this need by providing a yield response to water simulation model (AquaCrop) with limited sophistication. The objectives of this study were to evaluate the AquaCrop model for its ability to simulate wheat (Triticum aestivum L.) performance under full and deficit water conditions in a hot dry environment in south of Iran, to study the effect of different scenarios of irrigation (crop growth stages and depth of water applied) on wheat yield. The AquaCrop model was evaluated with experimental data collected during the three field experiments conducted in Ahvaz. The AquaCrop model was able to accurately simulate soil water content of root zone, crop biomass and grain yield, with normalized root mean square error (RMSE) less than 10%. The analysis of irrigation scenarios showed that the highest grain yield could be obtained by applying four irrigations (200 mm) at sowing, tillering, stem elongation and flowering or grain filing stages for wet years, four irrigations (200 mm) at sowing, stem elongation and flowering stages for normal years and six irrigations (300 mm) at sowing, emergence, tillering, stem elongation, flowering and grain filing stages for dry years. The least amount of irrigation water to provide enough water to response to evaporative demand of environment and to obtain high WUE for wet, normal and dry years were 100, 200 and 250 mm, respectively.  相似文献   

10.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP0.75 and WP0.50) were deficit irrigation treatments, and received 75% and 50% of WP1.0 irrigation amount. The highest seed yield was achieved with the WP1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels (P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP0.75 and WP0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP0.50 treatment, and is not recommended. In conclusion, the WP0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water.  相似文献   

11.
Field water supply (FWS) combines the three sources of water used by a crop for evapotranspiration (ET), and consists of available soil water at planting (ASWP), rainfall, and irrigation. Examining the grain yield and FWS relationship (Yg:FWS) may provide insight into the reported variability in crop water production functions such as water productivity (WP) and irrigation water productivity (IWP). Since water is most productive when entirely consumed in ET, diversion of FWS into non-ET losses such as drainage and excessive soil water evaporation results in declines in WP and IWP. The objective of this experiment was to examine the Yg:FWS and Yg:ET relationships of grain sorghum grown under a range of irrigation treatments (0, 25, 50, and 100% replacement of ET), beginning soil water contents, evaporative demands, in the Amarillo, Pullman, and Ulysses soils of the Great Plains. The purpose was to determine the amount of FWS beyond which declines in WP and IWP began to occur due to non-ET losses as indicated by a change in the slope and intercept of the Yg:FWS and Yg:ET relationships. Large amounts of non-ET irrigation application losses occurred in the finer-textured soils in the T-100 irrigation treatment. In both years, the T-100 irrigation application amounts and ASWP resulted in a FWS ranging from 750 to 870 mm which exceeded the maximum ET requirement of 530-630 mm and which reduced WP and IWP. Piecewise regression analysis of the Yg:FWS and Yg:ET relationships for the crops in the Pullman and Ulysses soils identified the knot point, or change in slope and intercept, in the FWS where both WP and IWP tended to be optimized. This was about 500 mm in both soils, and involved the utilization of about 250 mm in ASWP, irrigation applications averaging about 250 mm, and about 60-130 mm remaining in the soil at harvest. For the coarser-textured Amarillo soil, the yield response to increasing FWS was linear, because non-ET application losses such as drainage gradually increased with the irrigation application amount. The linear Yg response in the sandy Amarillo soil and the piecewise Yg responses in the clay and silt loams of the Pullman and Ulysses soils to FWS also reflected the difference in water-holding capacities of the soils that affected the amount of available water as irrigation increased. Irrigating without considering FWS resulted in non-ET irrigation application losses and declines in WP and IWP.  相似文献   

12.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

13.
This study analyzes the effects of irrigation modernization on water conservation, using the Riegos del Alto Aragón (RAA) irrigation project (NE Spain, 123354 ha) as a case study. A conceptual approach, based on water accounting and water productivity, has been used. Traditional surface irrigation systems and modern sprinkler systems currently occupy 73% and 27% of the irrigated area, respectively. Virtually all the irrigated area is devoted to field crops. Nowadays, farmers are investing on irrigation modernization by switching from surface to sprinkler irrigation because of the lack of labour and the reduction of net incomes as a consequence of reduction in European subsidies, among other factors. At the RAA project, modern sprinkler systems present higher crop yields and more intense cropping patterns than traditional surface irrigation systems. Crop evapotranspiration and non-beneficial evapotranspiration (mainly wind drift and evaporation loses, WDEL) per unit area are higher in sprinkler irrigated than in surface irrigated areas. Our results indicate that irrigation modernization will increase water depletion and water use. Farmers will achieve higher productivity and better working conditions. Likewise, the expected decreases in RAA irrigation return flows will lead to improvements in the quality of the receiving water bodies. However, water productivity computed over water depletion will not vary with irrigation modernization due to the typical linear relationship between yield and evapotranspiration and to the effect of WDEL on the regional water balance. Future variations in crop and energy prices might change the conclusions on economic productivity.  相似文献   

14.
The water balance of drip irrigated apricot trees (Prunus armeniaca L. cv. Búlida grafted onto “Realfino” apricot rootstock) was determined during a 30-month-period. Two irrigation regimes based on the reduction coefficients of Class A pan evaporation (1 and 0.5) were used to determine the water consumed. The water balance parameters for these treatments are shown and discussed in detail. Overall, the trees receiving less water showed 35% less evapotranspiration. Crop coefficients calculated on the basis of the water balance over a 30-month-period led to a saving of almost 14% water, since the coefficients were slightly below those used in other apricot orchards in the same area.  相似文献   

15.
A study of the water balances of The Fayoum irrigated lands and Lake Qarun was made to investigate the management of the irrigation system and the efficiency of irrigation water use. The two water balances are strongly interrelated. The drainage flow to Lake Qarun and the water level of the Lake are in delicate balance. A rise in Lake level causes the inundation of adjacent land. Management of The Fayoum water balance assumes control over irrigation water flows, but this control has technical and organizational limitations. Also discussed is the influence of irrigation practices in The Fayoum on the water balance (e.g., the autumn flushing of fields and farmers' preference for not irrigating at night in winter). Notwithstanding a high overall efficiency, irrigation efficiency during the winter is low. The reasons for this are given, together with the constraints against improving system management. Improved uniformity of the division and application of irrigation water will enable a better technical control of flows and will result in better water management in The Fayoum. Abbreviations: FID — Fayoum Irrigation Department, 1 feddan (fe) — 0.4 ha, 1 mcm — 1 million cubic metres: an average annual flow of 3.17 m3/s gives 100 mcm, m3/fe.year — supplied volume (m3) per surface area (fe) per year: 1000 m3/fe.year equals 240 mm/year, MSL — Mean Sea Level  相似文献   

16.
为了探讨西北旱区饲草作物节水灌溉新途径,在石羊河流域下游民勤干旱荒漠绿洲区大田进行了不同调亏灌溉模式下紫花苜蓿生长、作物系数及水分利用效率试验研究。结果表明,第一茬不同调亏处理最终株高差异不显著,而返青期、分枝期土壤水分下限为55%田间持水量(θf)的水分亏缺有利于增加分枝数,而茎粗随灌水量增加而增加。不同处理的耗水强度总体趋势是随着供水量的增加而递增。作物系数(Kc)第一茬随生育阶段逐渐增大,全年Kc随茬次递减。第一茬土壤水分下限55%θf的控水处理,有利于后继茬次生长,保证全年总产量最高。在石羊河流域水资源严重不足的情况下,调亏灌溉是一种有效的灌溉方式,在民勤干旱缺水地区苜蓿第一茬土壤水分下限不应低于55%θf,第二、三茬土壤水分下限保持(55%~70%)θf可以获得较高的产量和水分利用效率。  相似文献   

17.
Irrigation management strategy invites the quantification of crop response to irrigation frequencies. Conventionally, mulches increase the yield and water use efficiency (WUE) to a great extent by augmenting the water status in the root zone profile. A field study was carried out during the winter season (November-March) of 2003-2004 and 2004-2005 at the Central Research Farm of Bidhan Chandra Krishi Viswavidyalaya (Latitude 22°58′N, Longitude 88°31′E and altitude 9.75 m amsl), Gayeshpur, India, to evaluate the effect of irrigation frequencies and mulches on evapotranspiration rate from tomato crop field as well as leaf area index (LAI), fruit yield and WUE of the crop. The experiment was laid out in a split-plot design where three irrigation treatments {rainfed (RF); CPE50 and CPE25 where irrigation was given at 50 and 25 mm of cumulative pan evaporation (CPE)} were kept in the main plots and the subplots contained four mulch managements {no mulch (NM), rice straw mulch (RSM), white polyethylene mulch (WPM) and black polyethylene mulch (BPM)}. Under CPE25, tomato crop recorded significantly higher leaf area index (LAI) over CPE50 and rainfed condition. LAI value under BPM was 9-30% more over other mulches. Maximum variation of LAI among different treatments was recorded at 60 days after transplanting (DAT). Fruit yield under CPE25 was 39.4 Mg ha−1; a reduction of 7 and 30% has been obtained under CPE50 and RF condition. The use of mulch increased 23-57% yield in comparison to NM condition. Actual evapotranspiration rate (ETR) was 1.82 mm day−1 under CPE25 and declined by 15 and 31% under CPE50 and RF condition, respectively. The variation of ETR among different mulches became more prominent under maximum water stressed (RF) condition, whereas the variation was negligible under CPE25 frequency. Irrespective of mulching WUE was highest under moderately wet (CPE50) soil environment. Among different mulches, BPM was responsible for attaining the highest WUE value (25.1 kg m−3), which declined by 22, 21 and 39% under WPM, RSM and NM, respectively.  相似文献   

18.
Northeast Thailand has a semi-humid tropical climate which is characterized by dry and rainy seasons. In order to stabilize crop production, it may be necessary to develop new water resources, such as soil moisture and groundwater, instead of rainfed resources. This is because rainfed agriculture has already been unsuccessfully tried in many areas of this region. In this study, we investigate the soil water content in rainfed fields in Khon Kaen in Northeast Thailand, where rice and sugarcane were planted, over a 1-year period that contained both dry and rainy seasons, and estimate the actual evapotranspiration (ETa) using micrometeorological data. In addition, we assess the water balance from the results of the soil water content investigation and the actual evapotranspiration. Although the soil water content at depths above 0.6 m in both the lower and the sloping fields gradually decreased during the dry season, the soil water content at a depth of 1.0 m was under almost constant wet conditions. Two-dimensional profiles of the soil water content demonstrated that at the end of the dry season, the soil layers below a depth of 0.4 m showed a soil water content of more than 0.10-0.15 m3 m−3, thus suggesting that water was supplied to the sugarcane from those layers. The range in ETa rates was almost the same as that in the previous study. The average ETa rates were 3.7 mm d−1 for the lower field and 4.2 mm d−1 for the sloping field. In the dry season, an upward water flow of 373 mm (equivalent to a flux of 1.9 mm d−1) was estimated from outside the profile. The source of this upward water flow was the sandy clay (SC) layer below a depth of 1 m. It was this soil water supply from the SC layer that allowed the sugarcane to grow without irrigation.  相似文献   

19.
Agricultural production in irrigated areas is becoming more water-constrained. Scheduling the timing of the last irrigation on cereals is one effective method of reducing seasonal water use while maintaining crop yield and quality. The last irrigation application time and its impact on two-row malting barley (Hordeum distichum cv. Moravian 37) yield, quality, and economic benefits were studied in the 2000, 2001, and 2002 cropping seasons. Irrigation was stopped for the season at Milk, pre-Soft Dough, Soft Dough, and post-Soft Dough grain formation stages. The Soft Dough water cutoff treatment produced the highest grain yield of two-row spring malting barley. Water cutoff before or after Soft Dough stage reduced the grain yield significantly at P < 0.05, but the quality of grain for malt production was not significantly different when water was cut off at pre-Soft Dough or post-Soft Dough stages. Irrigation cutoff at Milk stage produced the lowest grain yield with the lowest quality. Decreases in grain yield and quality with the last irrigation at post-Soft Dough reduced grain value by $174 ha−1 relative to Soft Dough, while irrigation costs were higher (Fig. 6). The economic benefit due to labor and power cost reduction from earlier irrigation cutoff does not offset the resulting loss of grain value/ha for any treatment except post-SD under current southern Idaho energy and labor cost conditions.  相似文献   

20.
水肥交互作用对稻田氮素利用率和氮素平衡的影响   总被引:2,自引:0,他引:2  
采用蒸渗仪方法和同位素示踪技术研究了稻田常规灌溉和节水灌溉条件下不同施肥水平和施肥方式的氮素利用率和氮素平衡,结果表明:稻谷氮素累积量占植株氮素累积量一半左右,间歇灌溉模式和传统淹灌模式氮素累积量的差异反应在茎和绿叶和实粒,而在黄叶和秕粒中差别不大;差值法测得氮肥利用率比同位素法偏高,但二者均表现为间歇灌溉氮肥利用率高于淹灌模式,且间歇灌溉模式下低氮水平氮肥利用率高于高氮处理;根据同位素示踪法计算氮素平衡,氮素在稻田系统中的分配为氨挥发和反硝化占37.4%~51.7%,土壤残留占20.4%~37.7%,作物吸收占9.2%~36.4%,淋失占0.3%~16.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号