首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 155 毫秒
1.
冻融是作用于土壤的非生物应力,对元素生物地球化学循环过程影响显著。文章综述了冻融作用对土壤物理、化学和生物学性质的影响,分析了影响冻融理化效应的主控环境因子。结果表明:冻融循环可使土壤大团聚体破碎成小团聚体,细颗粒物表现出向中等大小颗粒物聚集的趋势;但冻融作用对团聚体水稳性的影响不一。由于土壤孔隙间冰晶膨胀,推动土壤颗粒发生相对位移,导致土壤孔隙度增加,容重随之降低。冻融初期,低温导致大量水分向冰晶转化,促使水分向土壤表层迁移;经反复冻融后,冰晶充分占据土壤孔隙,使水分移动空间变小、路径增长,造成不同深度土层含水率差异显著;水分状况改变又反过来对土壤冻融过程产生影响。冻融过程会增强土壤硝化作用和促进溶解性有机酸的释放,从而导致土壤溶液pH降低。冻融作用能够提高土壤有机碳(SOC)矿化速率,导致有机碳组分的固定与活化产生分异。冻融循环通过改变土壤理化性质和生物学性状,影响氮、磷素迁移转化方向和赋存形态以及温室气体N_2O等的排放。此外,冻融作用还显著影响土壤微生物群落结构,指示土壤微生物群落演替方向。冻融循环次数、温度和土壤含水率是影响上述冻融作用效应的关键因素。  相似文献   

2.
全球环境变化一直是人们广泛关注的热点问题,由人类活动和化石燃料燃烧引起的温度持续升高、温室气体排放增加、极端天气频繁发生等现象对土壤理化性质及微生物活动产生深刻影响。N2O作为一种具有强增温潜势的温室气体,对生态环境造成极大威胁。因此,全面深入地探究全球变化下不同环境因子对土壤N2O排放的影响有重要意义。论文综述了模拟全球变暖、CO2浓度倍增、降水格局改变以及氮沉降对土壤N2O排放的影响及微生物作用机制,阐述不同变化因子对N2O排放的交互效应。温度升高、CO2浓度增加和氮沉降均能促进N2O排放,但不同变化因子交互作用对N2O排放的影响存在差异。未来应加强对多个变化因子交互作用的研究,不仅有助于进一步了解N2O产生的影响因素,而且能为将来土壤生态系统对全球环境变化的响应研究和预测模型的建立提供理论基础。  相似文献   

3.
不同施肥模式对设施土壤CO2排放特征及碳平衡的影响   总被引:1,自引:0,他引:1  
  目的  探讨不同施肥模式对土壤CO2排放特征及碳平衡的影响,为设施土壤固碳减排和合理施肥提供数据支持。  方法  以“粉太郎”番茄为试材,基于设施微区试验,利用LI-8100A土壤碳通量自动测定仪观测了不同施肥模式[50%化肥N + 50%有机肥N + 改良剂组(HYG)、50%化肥N + 50%有机肥N组(HY)、100%有机肥N组(Y)、100%化肥N组(H)和不施肥处理组(CK)]土壤CO2的排放特征,探讨了土壤含水量、温度、pH、全氮、微生物生物量碳、土壤孔隙度、土壤有机质等因子对CO2排放量的影响。  结果  在番茄生长初期和施肥后,设施土壤CO2排放速率均表现为先升高后下降的趋势,土壤含水量和土壤温度的双因素复合模型可以解释76.0%(P < 0.01)土壤CO2排放速率的变化,不同施肥模式下造成土壤水热环境的变化会显著影响土壤CO2排放速率。整个生育期,不同施肥模式之间土壤CO2排放累积量差异显著(P < 0.05),相比CK处理,施入肥料的H、Y、HY和HYG处理的土壤CO2排放累积量分别提高了26.7%、83.2%、47.3%和44.2%。相关分析表明,土壤CO2排放累积量与土壤pH、全氮、微生物量碳、土壤孔隙度和有机质均呈极显著正相关关系(P < 0.01)。HYG处理相较其余各施肥处理可以显著提高番茄产量和总生物量,提高幅度分别为9.4% ~ 38.2%和9.0% ~ 32.9%。HYG处理相较当前设施土壤施肥方式(HY处理)显著降低土壤碳释放总量和作物碳排放效率,降幅分别为2.2%和10.9%,同时HYG处理可以使生态系统固碳潜力增加(11.5%)。  结论  从固碳减排的角度,50%化肥N + 50%有机肥N + 改良剂处理是辽宁地区设施番茄栽培适宜的施肥模式。  相似文献   

4.
冻融交替对土壤CO2及N2O释放效应的研究进展   总被引:3,自引:1,他引:2  
杨红露  秦纪洪  孙辉 《土壤》2010,42(4):519-525
在秋冬交替和冬春交替时期高纬度地区和高海拔生态系统表层土壤常有冻融交替频繁发生。由于冻融交替作用通过改变土壤水热性质而对土壤物理、化学、生物学特性产生效应。冻结通常导致土壤团聚体破裂、微生物细胞及细根死亡,释放出活性较高的有机物,增强随后融解的土壤的反硝化和呼吸活性,从而影响土壤生物、生物化学过程以及生物地化循环。已有对苔原、泰加林等北极和亚北极生态系统的研究表明,土壤冻融交替次数、冻融极端温度、土壤水分、土壤团聚体结构变化等对CO2和N2O的释放通量影响较为显著,一般在冻融的最初几个循环温室气体排放会增加,随后会降至一个较为稳定的水平。目前,冻融循环变化背景下的温室气体排放研究主要是针对北方高纬度地区,而且对冻融交替影响土壤温室气体排放的机理研究也不够。我国面积广大的青藏高原高海拔地带在全球增温背景下,轻微增温会导致季节性冻土表层冻融交替次数增加,甚至冻土季节消失,加强全球增温背景下我国高山亚高山季节性冻土生态系统效应和过程研究,特别是土壤暖化导致的温室气体排放变化通量和变化机理的研究,对揭示全球变化的区域效应以及高海拔生态系统的管理都具有重要作用。  相似文献   

5.
张小真    宋媛  胡亚鲜     《水土保持研究》2023,30(2):74-80
东北黑土坡耕地侵蚀沉积分异明显,且冻融交替频繁,但各坡位土层结构以及通气孔隙度随含水率和温度的季节性变化对有机碳矿化和CO2扩散效率的影响机理尚不清楚。以典型黑土坡耕地为研究对象,采集未侵蚀区表土风干、筛分后,选取粗(0.5~1 mm)、细(<0.125 mm)两种粒级,分层回填,全粗、全细、上粗下细、上细下粗4种土柱模拟典型坡位土层结构,对比分析冻融与非冻融不同温度梯度下,各土层结构CO2释放速率变化特征。结果表明:非冻融变温(5~30℃)条件下,各土层结构CO2释放速率存在显著差异,其中上粗下细土层CO2释放速率均值为14.45μg/(kg·h),显著高于其他土层,增幅达20%~59%,说明不同土层间土壤颗粒大小和上下堆叠关系对CO2传输效率有重要调控作用。经两次冻融作用后,0~15℃变温培养中,各土层间无显著差异,上粗下细土层CO2释放速率均值为4.17μg/(kg·h),略高于其他土层,说明冻涨融缩效应削弱了不同土层结构之间孔隙结构和联通性差...  相似文献   

6.
刘峰  赵鹏程  张昀  高晓丹  沙飞  孙萌  张景雯 《土壤通报》2022,53(6):1492-1498
土壤有机碳(SOC)是维持陆地生态系统生产力和可持续性的关键,以CO2为主的温室气体过量排放导致全球气候持续变暖,对全球SOC转化产生关键作用。微生物是SOC周转的动力,是全球变暖影响SOC储量与化学特性的关键媒介。研究发现,气候变暖导致大部分农田和森林有机碳储量下降,但草原有机碳含量升高,这可能与微生物对有机碳的异化分解和同化固定之间的权衡有关。气温升高可直接提高微生物的呼吸活性,导致真菌在土壤微生物的比例降低,而细菌所占比例升高,对土壤碳库储存产生不利影响;在永久和半永久冻土中,冻融促进土壤活性有机碳库的释放,提高了土壤微生物的碳矿化速率,导致有机碳严重的矿化流失。然而,气温升高和与之相伴的CO2浓度升高有利于植物生长,使得植物光合作用增强,向土壤中输入的有机碳增加;这些外源有机碳在微生物的作用下转化为稳定的SOC,有利于SOC累积。尽管已有大量研究,但气候变暖对SOC库的整体影响与微生物机制仍不明确。从多角度入手,深入认识气候-微生物-SOC之间的关系,有利于在全球变化的大背景下,充分发挥土壤碳汇效应,为“碳达峰”和“碳中和”提供理论与政策依据。  相似文献   

7.
[目的]从有机碳分子结构角度来揭示气候变化对黑土有机碳(SOC)稳定性的影响,阐明未来气候变化对黑土有机碳稳定性以及土壤肥力的影响。[方法]以中国科学院海伦农业生态试验站长期定位模拟气候变化开顶箱(OTC)试验为平台,对当前大气温度和CO2浓度(aTaCO2),增温2℃和当前大气CO2浓度(eTaCO2),增温2℃和CO2浓度增为(700±25)μmol/mol(eTeCO2)3个处理条件下0—20 cm黑土耕层土壤的团聚体和密度组分的有机碳含量和红外光谱特征进行分析。[结果]与aTaCO2相比,eTaCO2和eTeCO2均未对全土有机碳含量产生显著影响(p>0.05),但是eTaCO2使<0.053 mm团聚体和闭蓄态轻组(occluded light fractionation, OF)中SOC含量分别增加了13.45%和52.89%(p<0.05...  相似文献   

8.
藏北高寒草甸温室气体排放对长期增温的响应   总被引:1,自引:0,他引:1  
为深入认识高寒草甸温室气体通量对长期气候变暖的响应,利用开顶式生长室(OTC,Open Top Chamber)模拟增温2a(2Y,2015-2016年)和6a(6Y,2011-2016年)对藏北高寒草甸生长季CO2、CH4和N2O通量的影响。结果表明:与对照相比,生长季(6-8月)增温6Y处理和增温2Y处理分别增加和降低高寒草甸土壤CO2排放通量,其中7月增温6Y处理CO2排放通量显著高于增温2Y处理;增温6Y和2Y处理增加了高寒草甸CH4吸收通量,但是处理间差异均不显著;高寒草甸N2O排放通量表现为增温6Y>2Y>CK,处理间无显著差异。环境因子与温室气体排放通量的相关分析表明,CO2、CH4和N2O排放通量与0~5cm土壤温度相关不显著;土壤湿度、植物地上生物量、微生物生物量碳和蔗糖酶是影响高寒草甸CO2排放通量的关键因子;NO3--N是影响CH4吸收通量的关键因素;脲酶和NO3--N是影响N2O排放通量的主要因子。因此,增温6Y处理通过增加植物地上部生物量、蔗糖酶活性,从而提高了土壤CO2排放通量,增温6Y和2Y处理通过增加土壤脲酶和NO3--N含量,从而促进了土壤N2O排放和CH4的吸收通量。  相似文献   

9.
微生物介导的甲烷好氧氧化,对控制稻田甲烷排放起着重要作用。本文从基因、群落、活性等多个层次上解析CO2浓度缓增对稻田土壤甲烷好氧氧化过程的影响及其作用机理。依托于田间CO2浓度自动调控平台,在背景CO2浓度(AC)基础上,设置了CO2浓度缓增处理(每年增加40μL·L-1,持续4年)(EC)。采用室内泥浆培养以及高通量测序和定量PCR技术,对不同CO2处理下水稻关键生育期(分蘖期、拔节期、扬花期和乳熟期)土壤中的甲烷氧化潜势及其功能微生物的丰度和群落结构进行了系统研究。结果表明:大气CO2浓度升高促进了稻田甲烷氧化潜势和甲烷氧化菌丰度的增加;CO2浓度升高还使得土壤中甲烷氧化菌的群落结构发生了显著变化,其优势菌从Ⅱ型菌转变为Ⅰ型菌。CO2浓度升高所致的土壤中甲烷、氧气浓度以及氮素水平等的改变很可能对稻田甲烷氧化过程产生了重要影响。综合本研究发现,稻田甲烷氧化过程对大气CO2  相似文献   

10.
【目的】微生物残体碳是土壤稳定碳库的主要组成部分。探究不同冻融强度下东北黑土区土壤真菌和细菌残体碳的变化和积累特征,以及玉米秸秆对这一过程的影响,以加深对东北黑土土壤有机碳循环过程和微生物调控机理的认知,为东北黑土区土壤肥力提升提供理论支撑。【方法】研究采用室内模拟培养试验,供试材料为玉米秸秆和黑土。设置3个冻融强度处理:弱冻融(融冻温度/冻结温度为5℃/-4℃)、强冻融(融冻温度/冻结温度为5℃/-9℃)和5℃常温对照,每个冻融处理分别设置添加和不添加玉米秸秆处理。一个冻融循环为土壤样品在5℃培养24 h,逐渐降低温度至冻结温度,保持48 h,然后升温至5℃,直到总时间96 h (4天),然后进入下一个循环。冻融试验共进行了16次循环,总培养周期为65天。在第0、3、8、12和16次冻融后采集土壤样品,测定土壤氨基葡萄糖(真菌残体标识物)和胞壁酸(细菌残体标识物)含量,分析微生物残体碳的累积特征及其对土壤有机碳的贡献。【结果】不添加玉米秸秆条件下,强冻融处理在前期较恒温对照显著增加了真菌和细菌残体碳含量及其对土壤有机碳的贡献,降低了土壤真菌细菌残体碳比值(F/B),而弱冻融处理相关指...  相似文献   

11.
Depending upon how soil is managed, it can serve as a source or sink for atmospheric carbon dioxide (CO2). As the atmospheric CO2 concentration continues to increase, more attention is being focused on the soil as a possible sink for atmospheric CO2. This study was conducted to examine the short-term effects of crop rotation and N fertilization on soil CO2 emissions in Central Iowa. Soil CO2 emissions were measured during the growing seasons of 2003 and 2004 from plots fertilized with three N rates (0, 135, and 270 kg N ha−1) in continuous corn and a corn–soybean rotation in a split-plot design. Soil samples were collected in the spring of 2004 from the 0–15 cm soil depth to determine soil organic C content. Crop residue input was estimated using a harvest index based on the measured crop yield. The results show that increasing N fertilization generally decreased soil CO2 emissions and the continuous corn cropping system had higher soil CO2 emissions than the corn–soybean rotation. Soil CO2 emission rate at the peak time during the growing season and cumulative CO2 under continuous corn increased by 24 and 18%, respectively compared to that from corn–soybean rotation. During this period, the soil fertilized with 270 kg N ha−1 emitted, on average, 23% less CO2 than the soil fertilized with the other two N rates. The greatest difference in CO2 emission rate was observed in 2004; where plots that received 0 N rate had 31% greater CO2 emission rate than plots fertilized with 270 kg N ha−1. The findings of this research indicate that changes in cropping systems can have immediate impact on both rate and cumulative soil CO2 emissions, where continuous corn caused greater soil CO2 emissions than corn soybean rotation.  相似文献   

12.
利用室内培养实验,分析燥红壤和砖红壤中分别施加N0(不添加氮素)、N1(氮添加量为100mg·kg−1)、N2(氮添加量为200mg·kg−1)和N3(氮添加量为300mg.kg−1)4个水平氮后对土壤性质及N2O、CO2排放的影响。结果表明:氮肥添加显著降低了土壤pH和有机碳含量。相较于N0,燥红壤N1、N2和N3处理pH和有机碳降幅分别为8%~18%和4%~12%,砖红壤降幅分别为5%~23%和3%~15%;添加氮肥后各处理土壤全氮含量显著增加,燥红壤和砖红壤分别增加15%~54%和13%~52%。氮施入增加了土壤NH4+−N和NO3−N含量,各处理土壤铵态氮和硝态氮含量均表现为N3>N2>N1>N0。氮添加促进土壤N2O和CO2排放,相较于N0,燥红壤N2O和CO2累积排放量分别增加1176%~2425%和124%~281%,砖红壤分别增加1054%~1887%和138%~256%。施氮量和土壤类型是影响农田土壤N2O和CO2排放的重要因素。土壤N2O和CO2排放与施氮量呈线性显著相关,减少施肥是降低土壤N2O排放最直接和最有效的措施。与砖红壤相比,燥红壤N2O和CO2排放对氮素添加的响应更敏感。  相似文献   

13.
Stopping the increase of atmospheric CO2 level is an important task and information on how to implement adjustments on tillage practices could help lower soil CO2 emissions would be helpful. We describe how rotary tiller use on a red latosol affected soil CO2 efflux. The impact of changing blade rotation speed and rear shield position on soil CO2 efflux was investigated. Significant differences among treatments were observed up to 10 days after tillage. Cumulative CO2 efflux was as much as 40% greater when blade rotation of 216 rpm and a lowered rear shield was compared to blade rotation of 122 rpm and raised shield. This preliminary work suggests that adjusting rotary tiller settings could help reduce CO2 efflux close to that of undisturbed soil, thereby helping to conserve soil carbon in tropical environments.  相似文献   

14.
Soil tillage may influence CO2 emissions in agricultural systems. Agricultural soils are managed in several ways in Brazil, ranging from no tillage to intensive land preparation. The objective of this study was to determine the effect of common soil tillage treatments (disk harrow, reversible disk plow, rotary tiller and chisel plow tillage systems) on the intermediate CO2 emissions of a dark red latosol, located in southern Brazil. Different tillage systems produced significant differences in the CO2 emissions, and the results indicate that the chisel plow produced the highest soil carbon loss during the 15 days period after tillage treatments were performed. Emissions to the atmosphere increased as much as 74 g CO2 m−2, at the end of a 2-week period, in the plot where the chisel plow treatment was applied, in comparison to the non-disturbed plot. The results indicate that the total increase on the intermediate term soil CO2 emissions due to tillage treatments in southern Brazil is comparable to that reported for the more humid and cooler regions.  相似文献   

15.
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisol CO2 emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils.  相似文献   

16.
In semiarid Mediterranean agroecosystems, low and erratic annual rainfall together with the widespread use of mouldboard ploughing (conventional tillage, CT), as the main traditional tillage practice, has led to a depletion of soil organic matter (SOM) and with increases in CO2 emissions from soil to the atmosphere. In this study, we evaluated the viability of conservation tillage: RT, reduced tillage (chisel and cultivator ploughing) and, especially, NT (no-tillage) to reduce short-term (from 0 to 48 h after a tillage operation) and mid-term (from 0 h to several days since tillage operation) tillage-induced CO2 emissions. The study was conducted in three long-term tillage experiments located at different sites of the Ebro river valley (NE Spain) across a precipitation gradient. Soils were classified as: Fluventic Xerocrept, Typic Xerofluvent and Xerollic Calciorthid. Soil temperature and water content were also measured in order to determine their influence on tillage-induced CO2 fluxes. The majority of the CO2 flux measured immediately after tillage ranged from 0.17 to 6 g CO2 m−2 h−1 and was from 3 to 15 times greater than the flux before tillage operations, except in NT where soil CO2 flux was low and steady during the whole study period. Mid-term CO2 emission showed a different trend depending on the time of the year in which tillage was implemented. Microclimatic soil conditions (soil temperature and water content) had little impact on soil CO2 emission following tillage. In the semiarid Mediterranean agroecosystems studied, NT had low short-term soil CO2 efflux compared with other soil tillage systems (e.g., conventional and reduced tillage) and therefore can be recommended to better manage C in soil.  相似文献   

17.
Management of crop residues and soil organic matter is of primary importance in maintaining soil fertility and productivity and in minimizing agricultural impact on the environment. Our objective was to determine the effects of traffic and tillage on short-term carbon dioxide (CO2) and water (H2O) fluxes from a representative soil in the southeastern Coastal Plain (USA). The study was conducted on a Norfolk loamy sand (FAO classification, Luxic Ferralsols; USDA classification, fine-loamy siliceous, thermic Typic Kandiudults) cropped to a corn (Zea mays L.) — soybean (Glycine max (L.) Merr) rotation with a crimson clover (Trifolium incarnatum L.) winter cover crop for eight years. Experimental variables were with and without traffic under conventional tillage (CT) (disk harrow twice, chisel plow, field cultivator) and no tillage (NT) arranged in a split-plot design with four replicates. A wide-frame tractive vehicle enabled tillage without wheel traffic. Short-term CO2 and H2O fluxes were measured with a large portable chamber. Gas exchange measurements were made on both CT and NT at various times associated with tillage and irrigation events. Tillage-induced CO2 and H2O fluxes were larger than corresponding fluxes from untilled soil. Irrigation caused the CO2 fluxes to increase rapidly from both tillage systems, suggesting that soil gas fluxes were initially limited by lack of water. Tillage-induced CO2 and H2O fluxes were consistently higher than under NT. Cumulative CO2 flux from CT at the end of 80 h was nearly three times larger than from NT while the corresponding H2O loss was 1.6 times larger. Traffic had no significant effects on the magnitude of CO2 fluxes, possibly reflecting this soil’s natural tendency to reconsolidate. The immediate impact of intensive surface tillage of sandy soils on gaseous carbon loss was larger than traffic effects and suggests a need to develop new management practices for enhanced soil carbon and water management for these sensitive soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号