首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Summary Near-isogenic tall (no dwarfing gene), semidwarf (Rht1 or Rht2) and dwarf (Rht1 + Rht2 or Rht3) spring wheat lines were evaluated for yield and yield components under irrigated and rainfed conditions. Under irrigated conditions, the dwarf and the semidwarf lines exhibited a significant yield advantage over the tall lines. Under rainfed conditions, the semidwarf lines outyielded the tall as well as the dwarf lines. Percent yield reduction in response to drought stress was highest with the dwarfs and lowest with the tall lines. Dry matter production of the tall lines and that of the semidwarf lines did not differ significantly and both produced significantly more dry matter than the dwarf lines under irrigated as well as rainfed conditions. Plant height and kernel weight decreased with increasing degree of dwarfness while number of kernels per spikelet, harvest index and days to heading increased under both moisture regimes. The dwarfing genes did not have any significant influence on number of tillers/m2 and spikelets per spike in either moisture regime.  相似文献   

2.
Under field conditions in Germany over three growing seasons the pleiotropic effects on yield and its components of four sets of near isogenic lines carrying the GA insensitive dwarfing alleles Rht1, Rht2, Rht3, Rht1+2, Rht2+3 or rht (tall) in four different genetical backgrounds were examined together with 24 single chromosome recombinant lines segregating for the GA sensitive dwarfing gene Rht8 and the gene for day-length insensitivity Ppd1 in a ‘Cappelle-Desprez’ background. For the GA insensitive semi-dwarfs it was shown that in all three years a higher number of grains per ear was accompanied by a lower grain weight. Depending on the climatic conditions in a particular year, the increase in grain number was sufficient to compensate for the reduction in grain size and resulted in higher yields. For the Ppd1 allele yield advantages were found for wheats grown under environmental conditions of middle Europe.  相似文献   

3.
Rht8、Rht10和Rht12矮秆基因对产量构成因子的影响   总被引:1,自引:0,他引:1  
利用携带不同矮秆基因的近等基因系,通过两年、两地的试验研究证明,Rht8半矮秆基因虽然其总小穗数显著低于其他系,但其籽粒产量、小花结实率较Rht10和Rht12显著高.Rht10的降秆作用最强,千粒重显著高于Rht8,但其分蘖成穗率、结实率及小区籽粒产量显著低于其他,表现对环境条件特敏感.Rht12矮秆基因的降秆程度显著高于Rht8,但由于生物产量太低、成熟太晚,造成籽粒产量显著降低,在小麦育种中单独利用价值较低.  相似文献   

4.
Near isogenic lines (NILs) varying for genes for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c + Ppd-D1a, Rht-D1c, Rht12) were compared at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b Rht-D1b, Rht-D1b + Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c Ppd-D1a)]. Assessments included laboratory tests of germination and coleoptile length, and various field measurements of crop growth between emergence and pre jointing [plant population, tillering, leaf length, ground cover (GC), interception of photosynthetically active radiation (PAR), crop dry matter (DM) and nitrogen accumulation (N), far red: red reflectance ratio (FR:R), crop height, and weed dry matter]. All of the dwarfing alleles except Rht12 in the Mercia background and Rht8c in the DHs were associated with reduced coleoptile length. Most of the dwarfing alleles (depending on background) reduced seed viability. Severe dwarfing alleles (Rht-B1c, Rht-D1c and Rht12) were routinely associated with fewer plant numbers and reduced early crop growth (GC, PAR, DM, N, FR:R), and in 1 year, increased weed DM. In the Mercia background and the DHs the semi-dwarfing allele Rht-D1b was also sometimes associated with reductions in early crop growth; no such negative effects were associated with the marker for Rht8c. When significant interactions between cropping system and genotype did occur it was because differences between lines were more exaggerated in the organic system than in the conventional system. Ppd-D1a was associated positively with plant numbers surviving the winter and early crop growth (GC, FR:R, DM, N, PAR, height), and was the most significant locus in a QTL analysis. We conclude that, within these environmental and system contexts, genes moderating development are likely to be more important in influencing early resource capture than using Rht8c as an alternative semi-dwarfing gene to Rht-D1b.  相似文献   

5.
不同矮秆基因对冬小麦农艺性状的影响   总被引:4,自引:0,他引:4  
李杏普  蒋春志 《作物学报》1998,24(4):475-478
利用以冬麦品种MarisHuntsman为背景的含有不同矮杆基因Rht1,Rht2和Rht3及其不同结合形式的6个近等基因系,研究了不同矮秆基因对小麦农艺性状的作用,结果表明,Rht1半矮秆基因显著提高了单株穗数,粒数和粒重,地下部生物产量,经济系数和倒二叶面积,Rht2半矮秆基因显著提高了单株(或单穗)粒数和粒重,经济系数和倒二叶面积,显著降低了千粒重,Rht3矮秆基因对单株粒数,地上部生物产量  相似文献   

6.
Rht12, a dominant dwarfing gene of wheat, was shown to be located distally on the long arm of chromosome 5A. Lack of recombination with the awn inhibitor B1 suggested that Rht12 is cither tightly linked to this gene or is, in this material, a pleiotropic expression of the gene. Linkage to β-Amy-A1 was also very tight, indicating that Rht12 is present on the segment of chromosome SAL ancestrally translocated from 4AL. The close linkage to β-Amy-A1 also suggests that Rht12 is not a homoeoallele of the commercially important GA-insensitive dwarfing genes. Analysis of near-isogenic lines in a number of genetic backgrounds showed that Rht12 reduces height without altering ear size and significantly increases spikelet fertility. However its successful utilization in breeding programmes will require careful selection since in some backgrounds the gene reduces grain numbers and grain size. In all backgrounds, Rht12 delayed ear emergence time by around 6 days. A delay of this magnitude could, in many environments, adversely affect yield if it is not neutralized by altering the balance of other genes determining ear emergence time.  相似文献   

7.
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85 and 96 cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.  相似文献   

8.
Wheat reduced height (Rht) genes encode modified DELLA proteins, which are gibberellin insensitive, accumulate under stress, restrain growth and affect plant stress response. The seedling reaction to soil water deficit regarding leaf gas exchange and chlorophyll fluorescence was compared in near‐isogenic lines carrying the alleles Rht‐B1a (tall), Rht‐B1b (semi‐dwarfing) and Rht‐B1c (dwarfing) and was related to leaf water content and anatomy. Under drought, Rht‐B1c line was characterized by less decreased CO2 assimilation, delayed non‐stomatal limitation of photosynthesis and higher instantaneous water use efficiency. The functional state of its photosynthetic apparatus was better preserved as evidenced by the less decreased actual quantum yield (ΦPSII) and potential maximum quantum yield (Fv/Fm) of PSII, and the less increased quantum yield of non‐regulated energy dissipation (ΦNO). Rht‐B1b line also tended to perform better than Rht‐B1a, but differences were less pronounced. Although the leaves of both dwarf lines were smaller, thicker and more pubescent, their water content was not higher in comparison with the tall line. Nevertheless, in Rht‐B1c, leaf thickness was less decreased and mesophyll cells were less shrunk under drought. The more effective performance of the photosynthetic machinery of dwarf lines under water deficit could be explained by a combination of morpho‐anatomical and metabolic characteristics.  相似文献   

9.
Water deficiency is a major constraint to wheat productivity in drought prone regions. The wheat DELLA‐encoding height‐reducing genes (Rht) are associated with significant increase in grain yield. However, the knowledge of their benefit in dry environments is insufficient. The objective of the study was to examine the effect of induced drought on leaf water content, level of oxidative stress, cell membrane stability, accumulation of osmoprotectants and activity of some antioxidant enzymes in wheat near‐isogenic lines carrying the alleles Rht‐B1b (semidwarfing) and RhtB1c (dwarfing) in comparison with the tall control Rht‐B1a. Six‐day‐long water deprivation was imposed at seedling stage. Plants carrying Rht‐B1c and, to a lesser extent, those carrying Rht‐B1b performed better under stress compared with Rht‐B1a in terms of more sustained membrane integrity, enhanced osmoregulation and better antioxidant defence. These differential responses could reflect pleiotropic effects of the Rht‐B1 gene associated with the accumulation of the mutant gene product, that is, altered DELLA proteins, or might be related to allelic variations at neighbouring loci carrying candidate genes for proteins with a major role in plant water regulations and stress adaptation. These findings might be of importance to breeders when introducing Rht‐B1 alleles into wheat cultivars designed to be grown in drought liable regions.  相似文献   

10.
K. N. Rai  A. S. Rao 《Euphytica》1991,52(1):25-31
Summary A d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] is currently being extensively used for the development of hybrid parents. Its effect on grain yield and yield components is poorly understood. Twelve pairs of tall and dwarf near-isogenic lines developed in the diverse genetic background of three composites were evaluated for grain yield and yield components for 2 years at two locations in southern India. The d2 gene or the genes linked to it, on an average, reduced plant height by 42%, grain yield by 14%, and head girth by 8% but increased head length and number of tillers per plant by about 5–6%. Large variations were observed among pairs (genetic background) for the difference between tall and dwarf near-isogenic lines for all of the above yield components resulting in no significant difference in five pairs and 17–35% less yield in dwarfs as compared to their tall counterparts in six pairs. Days to 50% flowering and seed weight were least affected by the d2 gene with the average difference between tall and dwarf groups of near-isogenic lines being of the order of 1–2%. These results indicate that the advantageous effects of d2 dwarfing gene can be effectively exploited by manipulating the genetic background. The difference between the average grain yields of tall and dwarf groups of near-isogenic lines showed considerable variation across environments with the dwarfs yielding as much as tall group in one environment and up to 30% less than the tall group in the other, thus, indicating that the d2 gene effect may be substantially modified by the environments.Submitted as JA No. 979 by the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

11.
Semi‐dwarf wheat is an important prerequisite for releasing a successful commercial cultivar in high‐yielding environments. In Northern Europe, this aim is achieved by using one of the dwarfing genes Rht‐B1 (formerly known as Rht‐1) or Rht‐D1 (Rht‐2). Both genes, however, result in a higher susceptibility to Fusarium head blight (FHB). We analysed the possibility to use the two non‐adapted FHB resistance quantitative trait loci Fhb1 and Fhb5 (syn. QFhs.ifa‐5A) to counterbalance the negative effect of the dwarfing allele Rht‐D1b in a winter wheat population of 585 doubled‐haploid (DH) lines segregating for the three loci. All lines were inoculated with Fusarium culmorum at four locations and analysed for FHB severity, plant height, and heading date. The DH population showed a significant (< 0.001) genotypic variation for FHB severity ranging from 3.6% to 65.9% with a very high entry‐mean heritability of 0.95. The dwarfing allele Rht‐D1b reduced plant height by 24 cm, but nearly doubled the FHB susceptibility (24.74% vs. 12.74%). The resistance alleles of Fhb1 and Fhb5 reduced FHB susceptibility by 6.5 and 11.3 percentage points, respectively. Taken all three loci together, Fhb5 alone was already able to reduce FHB susceptibility to the same extent as Rht‐D1b increased it. This opens new avenues for selecting semi‐dwarf wheat by marker‐assisted introgression of Fhb5 without the enhancement of FHB susceptibility.  相似文献   

12.
利用以春小麦品种AprilBearded为背景的含有不同矮秆基因Rht1、Rht2、Rht3、Rht1+Rht2和Rht2+Rht3的5个近等基因系,研究了不同矮秆基因对小麦生长发育的作用。结果表明:Rht1半矮秆基因显著缩短了小麦植株生长发育进程,促进了地上部干物质积累,加大了旗叶面积和倒二叶面积,提高了单株成穗率,减少了无效分蘖;Rht2半矮秆基因显著增大了倒二叶面积,提高了单株成穗率和穗长,减少了无效分蘖;Rht3矮秆基因显著加大了旗叶面积,但对地上部干物质的积累、单株成穗和穗长均有显著的负向作用;Rht1+Rht2基因结合没有突出的优势存在:Rht2和Rht3基因结合对有利于提高小麦产量性状的作用均为负向最大;上述3种矮秆基因及其不同的结合形式均有显著的使茎秆矮化的作用。因此认为Rht1半矮秆基因在小麦育种中利用价值较大,Rht3矮秆基因利用价值则较小。  相似文献   

13.
Summary Wheat varieties tend to be chromosomally unstable producing on average 2–3% of plants with abnormal chromosome numbers. A number of semi dwarf wheat varieties, carrying the gibberellic acid insensitive dwarfing genes Rht1 or Rht2, have been seen to produce distinct tall off types due to reduction in dosage of the chromosome carrying the dwarfing gene. The UK variety Brigand, carrying Rht2 on chromosome 4D, produced very distinct tall off types when this chromosome was reduced in dosage. The frequency of tall off types was sufficiently high to cause the variety to fail United Kingdom statutory uniformity tests. An attempt to prevent the loss of chromosome 4D was made by constructing translocation chromosomes involving the short arm of chromosome 4D, which carries Rht2, and the long arm of chromosome 4S l from Aegilops sharonensis, which carries a gene(s) conferring preferential transmission. The work in this paper describes the field evaluation of two lines carrying 4DS.4DL-4S l L translocations, and demonstrates their success in preventing spontaneously occurring monosomy of chromosome 4D in semi-dwarf wheats.  相似文献   

14.
Summary The two semi-dwarfing genes Rht1 and Rht2 from Norin 10 have now been incorporated in successful varieties in use in most major wheat growing areas. The more potent dwarfing gene, Rht3, from Tom Thumb has been used in a limited way.These genes may be identified and classified by assessing the associated character of GA-insensitivity in the progeny from test crosses.This paper describes these classifications in the CIMMYT, Mexican, PBI, Cambridge and Indian breeding programmes and for a number of other international varieties.  相似文献   

15.
利用矮秆基因RhtB1-b、RhtD1-b和Rht8特异分子标记对郑麦583和2015-2016年度参加河南省区域试验、河南省品种比较试验、国家黄淮南片区域试验及国家黄淮麦区品种比较试验的共630份小麦材料的基因型进行检测。结果表明,供试材料中检测到549份材料含有RhtB1-b基因;592份材料含有RhtD1-b基因;513份材料含有Rht8基因;422份材料同时含有3个矮秆基因,169份材料仅含有2个矮秆基因,说明3个主要的矮秆基因在河南小麦育种过程中被聚合使用。此外,分析发现,矮秆基因Rht8与株高和每公顷穗数,以及千粒重具有显著相关性。郑麦583等小麦品种聚合了这3个矮秆基因,具有优良的丰产性,通过选择和利用矮秆基因对于培育具有丰产性优点的小麦品种具有一定价值。  相似文献   

16.
Toshiaki Yamada 《Euphytica》1990,50(3):221-239
Summary The GA response, Rht genes and culm length of 133 Norin varieties, 6 breeding lines and 16 landraces of Japanese wheat were investigated. Out of 133 Norin varieties tested, 103 were GA-insensitive and 30 GA-responsive. The 6 breeding lines were all GA-insensitive. Out of 16 landraces tested, 10 were GA-insensitive and 6 GA-responsive. Among the 10 GA-insensitive landraces, only Daruma had a Rht1 genotype. The other 9 had a Rht2 genotype. None of the landraces tested carried both Rht1 and Rht2 or Rht3. Out of the 103 GA-insensitive Norin varieties, 22 carried only Rht1, another 79 carried only Rht2, and only Norin 10 and Kokeshikomugi carried both Rht1 and Rht2. No tested variety carried Rht3. Some Norin varieties carrying Rht2 showed tall culms comparable to that of the rht tester line Chinese Spring. These results suggest that these varieties had a nullifier or modifier gene(s) or height promoting genes in the background controlling the height-reducing effect of Rht2. Conversely, six GA-responsive Norin varieties were as short as Akakomugi which carries the GA-responsive Rht genes, Rht8 and Rht9. The also seemed to carry a GA-responsive Rht gene or genes, and moreover all but one may carry gene(s) other than the Akakomugi genes. The origin of Rht1 and Rht2 of Norin 10 was speculated on the GA-response and Rht genotypes of its related varieties and landraces.  相似文献   

17.
Chromosomal location of dwarfing gene Rht12 in wheat   总被引:2,自引:0,他引:2  
J. Sutka  G. Kovács 《Euphytica》1987,36(2):521-523
Summary The chromosomal location of the dwarfing gene Rht12 in the mutant winter wheat Karcagi 522M7K was investigated using F2 monosomic analysis. The segregation ratio for F2 progenies of Chinese Spring monosomics × Karcagi 522M7K, and that of Cheyenne monosomics × Karcagi 522M7K indicated that the near complete dominant dwarfing gene Rht12 is located on chromosome 5A. The heterozygous and hemizygous states of the genes Rht12 have the same effect on plant height.  相似文献   

18.
Durum wheat is the most important tetraploid wheat mainly used for semolina and pasta production, but is notorious for its high susceptibility to Fusarium head blight (FHB). Our objectives were to identify and characterize quantitative trait loci (QTL) in winter durum and to evaluate the potential of genomic approaches for the improvement of FHB resistance. Here, we employed an international panel of 170 winter and 14 spring durum lines, phenotyped for Fusarium culmorum resistance at five environments. Heading date, plant height and mean FHB severity showed significant genotypic variation with high heritabilities and FHB resistance was negatively correlated with both heading date and plant height. The dwarfing gene Rht‐B1 significantly affected FHB resistance and the genome‐wide association scan identified eight additional QTL affecting FHB resistance, explaining between 1% and 14% of the genotypic variation. A genome‐wide prediction approach yielded only a slightly improved predictive ability compared to marker‐assisted selection based on the four strongest QTL. In conclusion, FHB resistance in durum wheat is a highly quantitative trait and in breeding programmes may best be tackled by classical high‐throughput recurrent phenotypic selection that can be assisted by genomic prediction if marker profiles are available.  相似文献   

19.
四倍体圆锥小麦(Triticum turgidum L.ssp.turgidum)地方品种矮蓝麦是我国重要的小麦矮秆基因资源,经鉴定其矮秆特性对外源赤霉酸敏感。2012年配制矮蓝麦与2个高秆圆锥小麦的正反交组合,2012—2013年在四川绵阳分别种植F1、F2代和F2:3家系,对株高的遗传分析表明,矮蓝麦的矮秆性状受1对隐性基因控制。利用BSA法构建高秆和矮秆池筛选多态性SSR标记,并对矮蓝麦/青稞麦F2分离群体进行连锁分析,将目标基因定位于7AS染色体上,与标记GWM471的遗传距离为2.5 c M。矮蓝麦与矮秆番麦正反交的F1和F2群体表现非常相似的株高变异特征,初步推测矮蓝麦的矮秆基因是Rht22;进一步用高通量SNP和DAr T标记对两品种进行全基因组扫描,发现二者的遗传相似性高达98.7%~99.3%。因此认为,历史上矮蓝麦和矮秆番麦可能是同一品种,是通过人为交流而传播到不同地方。矮蓝麦携带的矮秆基因在人工合成六倍体小麦遗传背景中降低株高能力中等或较弱,在育种中需要聚合其他矮秆基因而被利用。  相似文献   

20.
Summary Two wheat cultivars, Spica and Lerma 52, which consistently produce high levels of -amylase during the later stages of grain development (late maturity -amylase), were crossed with a set of four near-isogenic lines carrying the tall (rht) allele or one of the dwarfing genes Rht1, Rht2 or Rht3 (GA-insensitive alleles). The F1 and F2 populations were developed and analysed for grain -amylase and plant height. The Rht3 gene exhibited the strongest influence on plant height and strongly inhibited new -amylase synthesis during the later part of grain ripening. By comparison, Rht1 and Rht2 had a less pronounced effect but still significantly reduced the expression of late maturity -amylase. These observations suggest that gibberellic acid is involved either directly or indirectly in this phenomenon. The implications of the effect of dwarfing genes on expression of late maturity -amylase are discussed in relation to cultivar improvement and to the identification and control of high -amylase germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号