首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
异色瓢虫成虫对桃蚜捕食作用及空间异质性研究   总被引:5,自引:1,他引:5  
江文娟  李桂亭  李鹏  卢申 《安徽农业科学》2007,35(16):4750-4751
测定异色瓢虫成虫对桃蚜的捕食功能和空间异质性。结果表明:异色瓢虫成虫对桃蚜的捕食功能符合HollingⅡ模型,其244、8、72h的功能模型分别为Na24=1.021 5N/(1+0.004 06N)、Na48=1.065 0N/(1+0.003 62N)、Na72=1.037 3N/(1+0.002 12N),最大理论捕食量分别为251.892、94.124、90.20头;随着果荚数的增多,天敌对猎物搜寻过程中的环境阻力不断加大,捕食作用逐渐降低,捕食作用率同空间异质性呈现明显的线性负相关,其数学模型为y=83.833-10.100x。  相似文献   

2.
桃蚜的空间分布型与异色瓢虫对桃蚜捕食功能的研究   总被引:5,自引:0,他引:5  
采用聚集度指标检验、线性回归方程检验、空间分布型适合度卡方 (χ2 )检验方法对桃蚜的空间分布型进行计算与分析 ,结果表明 ,桃蚜呈聚集型的负二项分布 ;初步研究探明了异色瓢虫对桃蚜的捕食功能和桃蚜田间防治方法  相似文献   

3.
异色瓢虫的发生及其对苹果绵蚜的控制作用   总被引:5,自引:0,他引:5  
异色瓢虫是苹果绵蚜的主要捕食性天敢昆虫,其在苹果园的初发期在2—3月,高蜂期在3—4月。异色瓢虫在生草园的初发生期与高蜂期均比清耕园提前了半个月至1个月,且活动时间延长。研究表明,异色瓢虫成虫Harmonias axyridis(Pallas)对苹果绵蚜成虫Eriosoma lanigerum(Hausmann)的捕食功能反应符合HollingⅡ型,其模型是Na=1.3868N/(1+0.01922N),捕食量随苹果绵蚜密度的增加而增加。异色瓢虫的日最大捕食量和最佳寻找密度分别为55.9头和22.5头,异色瓢虫干扰反应的数学模型为E=37.2P-0.1683。异色瓢虫的捕食量随温度的升高而增加。  相似文献   

4.
为有效释放异色瓢虫防控豌豆蚜,调查异色瓢虫各龄期幼虫和成虫对不同密度豌豆蚜的捕食量及捕食效应.结果表明,异色瓢虫各龄期幼虫(Ⅰ龄~Ⅳ龄)、雄虫和雌虫的理论最大日捕食量分别为12.88、46.66、85.88、160.04、198.20、204.75头;捕食功能参数a/Th最大的为雌虫,可达206.75,其次是雄虫和Ⅳ龄幼虫,分别为196.18和143.79,雌虫对豌豆蚜的控制能力最强,其次是雄虫和Ⅳ龄幼虫,Ⅳ龄幼虫的捕食能力强于其他低龄幼虫;随豌豆蚜密度的增加,异色瓢虫各龄幼虫和成虫的捕食量也不断增大,当豌豆蚜超过一定密度后,其捕食量增加缓慢并逐渐趋于稳定.异色瓢虫各龄期幼虫和成虫对豌豆蚜的捕食功能反应均符合HollingⅡ模型,圆盘方程的理论值与实测值拟合较好.随豌豆蚜密度的增加,异色瓢虫各龄期幼虫和成虫对豌豆蚜的寻找效应随之降低.异色瓢虫成虫对豌豆蚜的控害效果较好,可作为生物防治技术应用于田间防控.  相似文献   

5.
在小麦穗蚜发生始期人工释放商品化的异色瓢虫幼虫,以明确异色瓢虫对穗蚜的控制效果。结果表明:释放瓢虫1.5万头/hm2,对麦蚜有较好的控制效果,且持效期长,5 d后防效达103.7%,10 d后防效仍达183.7%。  相似文献   

6.
为明确温度对异色瓢虫(Harmonia axyridis)各虫态捕食桃蚜(Myzus persicae)能力的影响,设定18、23、28、33℃四个温度处理,测定不同虫态(龄)异色瓢虫(1—4龄幼虫和成虫)在不同猎物密度条件下对桃蚜的捕食量,并分析其捕食功能反应和寻找效应。结果显示:不同温度下各虫态异色瓢虫对桃蚜的捕食功能反应属于HollingⅡ型。在18—33℃条件下,随着温度的升高,各虫态异色瓢虫对桃蚜的捕食量逐渐增加。在33℃条件下,异色瓢虫的捕食能力(a∕Th)最强,理论最大捕食量(1∕Th)最高。同一温度下,异色瓢虫对桃蚜的捕食能力、理论最大捕食量均表现为4龄幼虫>成虫> 3龄幼虫> 2龄幼虫> 1龄幼虫。4龄异色瓢虫幼虫在4个温度处理下对桃蚜的理论最大捕食量(1∕Th)分别为90.909、 200.000、 333.333、 500.000头。各虫态异色瓢虫对猎物的寻找效应均随温度的升高而增加,随猎物密度的增加而降低。综上,在一定温度范围内,各虫态异色瓢虫对桃蚜的捕食能力、日最大捕食量和寻找效应均随温度的升高而增加。  相似文献   

7.
 异毛真胸蚜(Euthoracaphis heterotricha Ghosh and Raychaudhuri)是中国一新纪录种蚜虫,本试验测定异色瓢虫捕食异毛真胸蚜的功能反应,采用Holling Ⅱ型方程和Honing Ⅲ型功能反应模型对异色瓢虫1~4龄幼虫和雌雄成虫捕食异毛真胸蚜的作用进行拟合,由模型得出,其寻找效应均随着猎物密度的增加而降低,且在猎物密度相同的情况下,成虫的寻找效应大于幼虫,幼虫随虫龄的增加寻找效应增大。一头异色瓢虫雌、雄成虫及4龄、3龄幼虫对异毛真胸蚜的最佳寻找密度分别为16.64,16.35,14.84,13.02头。当异毛真胸蚜若虫密度N→∞时,每头异色瓢虫1~4龄幼虫及雄、雌成虫对异毛真胸蚜的理论最大日捕食量分别为19.49,25.77,35.09,50.51,74.63,78.13头,表明异色瓢虫对异毛真胸蚜捕食潜力很大,尤其是3,4龄幼虫及成虫对异毛真胸蚜具有较大的捕食潜能。  相似文献   

8.
本研究通过异色瓢虫对常州地区桃树蚜虫进行“以虫治虫”与常规农药防治进行试验对比,结果表明,当桃蚜数量达到防治指标时按要求投放异色瓢虫,投放1周后防效在15%以上,随后防效逐渐提升,至第5周时防效在85%以上,随后在非生草桃园防效开始回落,而在生草桃园防效持续保持;常规农药使用后第1周防效在80%以上,第2周防效可达90%,至第5周防效降至70%左右。由此可见,异色瓢虫能够对桃蚜种群进行有效的控制,与常规农药防治相比,在速效方面存在一定差距,但在持续控害方面具有明显的优势。  相似文献   

9.
异色瓢虫对莲缢管蚜的捕食作用研究   总被引:14,自引:0,他引:14  
异色瓢虫对莲缢管蚜的捕食功能反应符合HollingII型方程,其捕食量随猎物密度的增加而增大,寻找效应随着猎物密度的增加而降低。与此同时,研究结果还表明,异色瓢虫的捕食作用有较强的种内干扰反应,随着捕食者密度的增大,平均捕食量逐渐减少,捕食作用率也相应降低,其干扰反应模型为:E=0.36P-1.3112(3龄幼虫)、E=0.522 4P-1.909 6(4龄幼虫)和E=0.384 5P-1.856 3(成虫)。  相似文献   

10.
异色瓢虫对两种蚜虫捕食作用的初步研究   总被引:13,自引:0,他引:13  
通过对异色瓢虫成虫经24小时饥饿处理后,对不同密度下的大豆蚜和玉米蚜捕食量变化的比较分析,认为异色瓢虫捕食这两种蚜虫功能反应符合Ⅱ型反应,均可用Holling圆盘方程拟合,其方程式为:Na玉米=0.6792N/(1+0.0022N)、Na大豆=0.9463N/(1+0.0023N),同时,经比较异色瓢虫对大豆蚜和玉米蚜的功能参数,发现异色瓢虫对大豆蚜的控制能力明显强于玉米蚜。  相似文献   

11.
异色瓢虫是一种重要的捕食性天敌,可捕食多种蚜虫,在生物防治中具有很大应用前景。研究了异色瓢虫对3种蚜虫(即菜缢管蚜、禾谷缢管蚜和白杨毛蚜)的捕食功能反应。结果表明:异色瓢虫对3种蚜虫的日捕食量中,其中四龄幼虫最大,成虫和三龄幼虫次之,1、2龄幼虫最小。捕食者对猎物的功能反应均属于Holling-Ⅱ型方程。  相似文献   

12.
朱强 《现代农业科技》2014,(11):123+128
异色瓢虫是徂徕山林场常见天敌之一,在实验室条件下,测定了异色瓢虫对徂徕山林场2种重要蚜虫板栗大蚜和松蚜的选择效应。结果表明,当2种蚜虫种群数量同步增加,则取决于瓢虫原来的生境和饲喂条件,当板栗大蚜或松蚜种群上升时,则喜好取食种群数量大的蚜虫。  相似文献   

13.
四斑广盾瓢虫(Platynaspis maculosa)是广西壮族自治区亚热带植物科普园桃园捕食桃蚜(Myzus persicae)的天敌优势种之一,为明确四斑广盾瓢虫对桃蚜的捕食能力,在室内自然变温条件下初步研究四斑广盾瓢虫成虫对桃蚜的捕食功能,采用Holling-Ⅱ型方程对四斑广盾瓢虫捕食桃蚜的作用进行拟合。结果表明,四斑广盾瓢虫成虫对桃蚜的捕食功能反应符合Holling-Ⅱ模型,Na=1.053 5Nt/(1+0.013 0Nt),其瞬时攻击率为1.053 5,处置时间为0.012 3 d。通过Hassell和Valley的干扰效应模型可以看出,四斑广盾瓢虫自身密度的增加会导致种内的干扰效应,干扰参数为0.372 4,其对桃蚜的寻找效应随桃蚜密度的上升而下降,最佳寻找密度为32.31头。四斑广盾瓢虫对桃蚜具有一定的捕食能力,室内试验成虫24 h最大捕食量为81.30头。  相似文献   

14.
异色瓢虫成虫对豌豆修尾蚜的捕食作用   总被引:1,自引:0,他引:1  
初步研究了异色瓢虫(Harmonia axyridis Pallas)的雌、雄成虫对豌豆修尾蚜(Megoura japonica Matsumura)的捕食作用,采用Holling-Ⅱ型方程功能反应模型对异色瓢虫雌、雄成虫捕食豌豆修尾蚜的效果进行拟合。结果表明,异色瓢虫雌、雄成虫的功能反应均符合Holling-Ⅱ模型。而在一定空间和相同比例猎物条件下,种内干扰会对异色瓢虫成虫捕食豌豆修尾蚜产生影响,此试验中干扰系数为1.09。  相似文献   

15.
王涛  张悦  孙玉刚  王金秀  韩军  郭喜军  张发明  曲爱军 《安徽农业科学》2011,39(28):17286-17287,17290
[目的]探究异色瓢虫显明变种对杨树主要蚜虫白杨毛蚜和白毛蚜的捕食选择趋性。[方法]在实验室条件下,在特定空间内,测定异色瓢虫显明变种对2种蚜虫不同密度值下的捕食量。[结果]白杨毛蚜和白毛蚜种群数量同步增加时,EG-S值和EJ值变化为+1~0,EI值是在0~-1范围内依次减少,且数值变化幅度较少,表明异色瓢虫显明变种喜好捕食白毛蚜略高于白杨毛蚜;当白杨毛蚜数量不变、白毛蚜数量增加时,EG-S值和EJ值变化为+1~∞,EI值在0~+1范围内依次增加,表明异色瓢虫显明变种明显喜好捕食白毛蚜;当白毛蚜数量不变、白杨毛蚜数量增加时,EG-S值和EJ值变化为在+1~0范围内依次减少,EI值在0~-1范围内依次增加,表明异色瓢虫显明变种明显喜好捕食白杨毛蚜。捕食量结果同选择指数。[结论]异色瓢虫显现变种白杨毛蚜和白毛蚜的捕食选择趋性取决于2种蚜虫的种群数量。  相似文献   

16.
异色瓢虫对甘蓝蚜的捕食效应分析   总被引:1,自引:0,他引:1  
研究表明,异色瓢虫成虫(Leis axyridis)捕食甘蓝蚜(Brevicoryne brassicae)的功能反应符合Holling-Ⅱ型模型,为Na= 1.175N/(1+0.00635N),捕食甘蓝蚜的数量随蚜虫密度增加而增大,日最大捕食量为185.2头.幼虫的日最大捕食量分别为一龄14.47头、二龄45.05头、三龄72.46头、四龄153.84头.Watt干扰与竞争模型A=82.832P-0.813,随着捕食者密度的增加,异色瓢虫成虫总的捕食量增加,但平均每一头的捕食量下降.Hassell捕食效应模型拟合结果为E=0.994P-0.916,异色瓢虫成虫之间存在种内干扰.Cain指数D都大于1,异色瓢虫对甘蓝蚜的捕食性有很强的选择性,而对桃蚜的捕食选择性较差.该研究为正确评价异色瓢虫控制甘蓝蚜的作用提供了科学依据.  相似文献   

17.
采用简易静态熏气系统在浓度为17mg/m^3的SO2胁迫下,研究异色瓢虫Harmonia axyridis(Pallas)3龄幼虫和成虫对桃粉大尾蚜Hyaloptera amygdales(Blanchard)捕食的功能反应及自身密度干扰作用。研究结果表明,捕食功能反应属于Holling-Ⅱ型圆盘方程,SO2可以提高异色瓢虫3龄幼虫、成虫捕食能力,异色瓢虫的捕食量随着猎物密度的增加而增大,对桃粉大尾蚜的寻找效应也有增加的趋势,同时SO2减缓了随着异色瓢虫自身密度增加存在的干扰作用。  相似文献   

18.
欧善生 《安徽农业科学》2008,36(3):974-975,1052
[目的]了解大突肩瓢虫对桃蚜的捕食能力及其利用价值。[方法]在放有1头大突肩瓢虫成虫的培养皿中分别放20、406、0、80、1001、20、1401、601、80头无翅桃蚜,室内自然条件下饲养,研究大突肩瓢虫成虫对桃蚜的捕食作用。[结果]1头大突肩瓢虫成虫对无翅桃蚜的平均日捕食量在桃蚜密度为20~120头/培养皿时随桃蚜密度的增大而增大;在桃蚜密度为120头/培养皿时最大,达83.889头;在桃蚜密度大于120头/培养皿时下降。大突肩瓢虫成虫对无翅桃蚜的捕食功能反应符合HollingⅡ型圆盘方程,日最大捕食量的理论值为227.427 8头。[结论]在室内自然条件下,大突肩瓢虫成虫对无翅桃蚜的捕食量相当大,是控制桃蚜的重要天敌资源,值得保护,应充分利用。  相似文献   

19.
七星瓢虫对桃蚜的捕食功能反应研究   总被引:6,自引:0,他引:6  
七星瓢虫(Coccinella septempunctata L.)是宁夏银川十字花科菜田捕食桃蚜(Myzus persicae)的天敌优势种之一.在实验室自然温度条件下,对七星瓢虫捕食桃蚜进行了初步研究,结果表明:其功能反应属Holling Ⅱ型,M=0.9851Nt/(1 0.004267Nt).随着桃蚜密度的增大,七星瓢虫的捕食量也逐渐增加,每头瓢虫的捕食上限为777.5头.每捕食1头桃蚜所需时间Th为0.001286d,瞬时的猎物发现率(攻击率)a′为0.9851.而且七星瓢虫对桃蚜的捕食作用在一定的空间范围内受其自身的密度制约,相互间存在干扰.  相似文献   

20.
异色瓢虫成虫对3种蚜虫捕食选择性研究   总被引:1,自引:0,他引:1  
研究了异色瓢虫成虫对不同密度下和不同虫龄的菜蚜、麦蚜、苹果瘤蚜的捕食量,结果表明,异色瓢虫成虫对3种蚜虫成虫与幼虫的捕食量与其密度均符合HollingⅡ型方程,其捕食量随猎物密度的增加而增大,寻找效应随着猎物密度的增加而降低;异色瓢虫对菜蚜和麦蚜成、若虫均有较好的的防治效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号