首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model for the transport of pesticides in non-structured arable soil has been tested under field conditions. Three classes of sorption site are distinguished in the model. Sorption at class 1 sites is assumed to be at equilibrium whereas sorption at class 2 and class 3 sites is calculated using rate equations. Class 2 sites equilibrate on a time scale of days and class 3 sites equilibrate on a time scale of hundreds of days. In the model, the liquid phase is assumed to be homogeneous and completely mobile. The model was validated in two field experiments on a loamy sand soil using the herbicides cyanazine and metribuzin and using bromide ion as a tracer of liquid flow in soil. Ignoring sorption at class 3 sites resulted in large discrepancies between calculated and measured concentration profiles. Calculated concentration profiles were sensitive to the desorption rate constant for class 3 sites.  相似文献   

2.
A field experiment at Cockle Park, Northumberland on a clay loam soil (Dunkeswick series) cropped with winter wheat investigated the effects of drainage and season of application on pesticide movement. Isoproturon, mecoprop, fonofos and trifluralin were applied in two consecutive seasons at normal agricultural rates to three hydrologically isolated plots each of 0.25 ha. Two of the plots were mole-drained and the third was an undrained control. Surfacelayer flow and drainflow from each plot were monitored at 10-min intervals. Samples of flow were analysed for pesticides to evaluate transport of applied chemicals from the site. Despite widely differing properties (Koc 20–8000 ml g?1, t1/2 10–60 days), all four pesticides were found in surface-layer flow and mole drainflow from the site. Maximum concentrations of pesticides in flow ranged from 0.1 to 121 μg litre?1 (aqueous phase) and < 0.2 to 48 μg litre?1 (particulate phase). Over two contrasting seasons, total losses of pesticides in flow followed total amounts of flow and were approximately four and five times larger, respectively, in 1990/91 than in 1989/90. The maximum loss occurred from the undrained plot and was 2.8 g isoproturon (0.45% of that applied). Total losses of autumn-applied pesticides from an undrained plot were up to four times greater than losses from a mole-drained plot. Mole drainage decreased movement of pesticides from this slowly permeable soil by reducing the amount of surfacelayer flow. Maximum concentrations of mecoprop and isoproturon in drainflow were 10–20 times larger following spring application than after application in autumn. Bypass flow down soil cracks was an important process by which pesticide was lost from the site, with transport to the drainage system via mole channels (55 cm depth) after less than 0.5 and 6.7 mm net drainage in the two winters.  相似文献   

3.
Chemical methods (HPLC, GC/MS) for the control of pesticides in water at low concentrations are time-consuming, expensive and need sample pre-concentration. Immunoassays offer the potential of rapid, inexpensive, sensitive and specific detection methods. This paper presents a flow injection system that is based on immunochemical reaction and which provides the opportunity for automated, quasi-continuous measurements for screening water samples for the presence of pesticides. The method of flow injection immunoanalysis (FIIA) was compared with competitive ELISA (enzyme-linked immunosorbent assay). It is possible to measure in the range of interest of 0·1 μg litre?1, which is the limiting value of the European drinking water directive. Measurements were made for the triazine herbicides atrazine and propazine, which both cross-react with the polyclonal antiserum used. Furthermore, this device includes a new development of a membrane reactor for the exchange of used biological material, in this case antibodies. A brief comparison of ELISA and FIIA is presented, giving an overview of some aspects of the assays.  相似文献   

4.
Empirical equations were used to calculate the moisture content of surface soil from measurements of rainfall and daily maximum and minimum air temperatures. Air temperatures were also used to calculate soil temperatures. There was good agreement between calculated and measured moisture contents and temperatures from Wellesbourne and from some sites in North America. The equations were incorporated into a simulation model for the prediction of herbicide persistence. Results from the model were essentially the same, whether calculated or measured soil moistures and temperatures were used in the calculations.  相似文献   

5.
西北春小麦和麦田土壤中15种常用农药残留的检测   总被引:1,自引:0,他引:1  
为掌握西北春小麦和麦田土壤的农药残留污染状况,在调研和总结分析了西北春小麦的病、虫、草害发生和防治措施基础上,采集了我国西北地区甘肃、青海、宁夏的9个春小麦产区的小麦籽粒和麦田土壤样品。针对春小麦病虫草害防治中常用的农药,使用HPLC-MS/MS和GC-MS方法,测定了吡虫啉、高效氯氰菊酯、辛硫磷、毒死蜱等4种杀虫剂,三唑酮及其代谢物三唑醇、戊唑醇、多菌灵、三环唑、苯醚甲环唑等6种杀菌剂,精噁唑禾草灵、苯磺隆、2,4-滴丁酯、炔草酯及其代谢物炔草酸等5种除草剂,共15种农药及代谢物在小麦籽粒和麦田土壤中的残留量。通过与小麦中农药残留限量相比较,评价了西北春小麦的食品安全。结果显示,仅在采自甘肃金昌的小麦籽粒样品中检出了戊唑醇,且未超过最大残留限量,在其他样品中均未检出15种农药的残留,表明西北春小麦和麦田土壤的农药安全性均较高。本研究为掌握小麦籽粒的农药残留和麦田土壤的农药污染情况提供了研究数据,为进一步指导西北春小麦的绿色无公害病虫害防治提供了参考。  相似文献   

6.
Results of field measurements and laboratory experiments were used to simulate the behaviour of 1,3-dichloropropene (1,3-D) in a loamy sand soil. Microbial activity was described using pre-set conditions to compute transformation rates as dependent on compound concentrations and temperature. These kinetics could only be analysed using non-linear transformation rates. To link the development of microbial populations and the consumption of the compound over time, an iterative technique was used to estimate the necessary parameters.  相似文献   

7.
Soils were collected from a potato-growing area in Serres, Northern Greece, where the nematicide ethoprophos was reported to have lost its effectiveness against cyst nematodes following 30 years of regular use. Incubation studies with ethoprophos and two bioassays using root-knot nematodes demonstrated that, in this heavily treated soil, the nematicide was degraded rapidly and nematicidal activity persisted only up to 14 days. In soil from an adjacent field with no known history of nematicide use during the preceding 14 years, ethoprophos was degraded more slowly and retained its nematicidal activity for more than 35 days. Ethoprophos efficacy was extended when the soil that had been treated in the field was autoclaved, although the effect was only transitory. The addition of ‘pre-conditioned’ soil from the previously treated field to samples of soil from the previously untreated field resulted in a significant acceleration of ethoprophos degradation compared with that observed in unamended soil from the previously untreated field. © 1999 Society of Chemical Industry  相似文献   

8.
The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2–10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in Brassica rapa L. var. perviridis were relatively high. In addition, the changes in shoot concentrations with growth stage of B. rapa were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical’s properties and behavior of organic chemicals in the soil.  相似文献   

9.
The mobility and retention of atrazine and dicamba in six Atlantic Coastal Plain soils were estimated by soil thin-layer chromatography (soil-TLC). The soils studied were representative of the major agricultural regions in Delaware and were sampled, by horizon, to the water table. Four horizons from each profile were leached simultaneously with distilled water on one soil-TLC plate. Two values were obtained from each plate: the ratio of the distance traveled by the herbicide center of mass over that traveled by the solvent front (Rm), and a sorption distribution coefficient (Kd). The Rm values ranged from 0·06 to 0·94 for atrazine and from 0·80 to 0·94 for dicamba. Herbicide mobility was found to be greatest in coarse-textured soil horizons that contained low levels of organic matter, clay, and Fe and Al oxides. Correlation analysis indicated that effective cation exchange capacity, exchangeable acidity, exchangeable aluminum, and clay were useful predictive variables or both atrazine mobility and sorption. Organic matter was not useful for predicting soil-TLC derived sorption estimates; however, it was correlated to Kd-batch estimates. Distribution coefficients calculated from soil-TLC data were found to be in general agreement with Kd values obtained for the same soils by batch equilibrium techniques. The average Kd-soil-TLC values for atrazine and dicamba were 2·09(±2·24) and 0·03(±0·02), respectively. The ratio of the batch Kd to the soil-TLC Kd ranged from 0·1 to 19 (x̄=1·6, SD=3·8) for atrazine and from 2·9 to 38 (x̄=12·6, SD=8·7) for dicamba. Thus, although for some horizons agreement between the two methods was good, for other horizons significant discrepancies existed. It is suggested that the soil-TLC gives results under non-equilibrium conditions, whereas the batch procedure is, by definition, at quasi-equilibrium. These fundamental differences may account for the observed differences between the two methods. It is also suggested that, due to this difference, the soil-TLC procedure can provide additional information relevant to herbicide partitioning in the field environment that is not provided by traditional batch equilibrium techniques. © 1998 Society of Chemical Industry  相似文献   

10.
The rate of transformation of a pesticide as a function of the depth in the soil is needed as an input into computations on the risk of residues leaching to groundwater. The herbicide bentazone was incubated at 15 °C in soil materials derived from four layers at depths of up to 2.5 m in a humic sandy soil profile with a fluctuating water table (0.8 to 1.4 m), while simulating the redox conditions existing in the field. Gamma‐irradiation experiments indicated that bentazone is mainly transformed by microbial activity in the soil. The rate constant for transformation was highest in the humic sandy top layer; it decreased with depth in the sandy vadose subsoil. However, material from the top of the phreatic aquifer had a higher rate constant than that from the layers just above. The presence of fossil organic material in the fluviatile water‐saturated sediment probably stimulated microbial activity and bentazone transformation. The changes in the transformation rate constant with depth showed the same trend as those in some soil factors, viz organic carbon content, water‐extractable phosphorus and microbial density as measured by fluorescence counts. However, the (low) concentration of dissolved organic carbon (DOC) in the top of the aquifer did not fit the trend. The rate constant for bentazone transformation in the layers was higher at lower initial contents of the herbicide. © 2001 Society of Chemical Industry  相似文献   

11.
12.
WRc are undertaking a long term study of pesticides in the aquatic environment. A study of the pesticides in the rain, river water and groundwater of the Granta catchment in Cambridgeshire is now in its fourth year. Preliminary results are presented and the concentrations of agricultural pesticides in environmental waters are related to the land-use within the catchment. The Granta study is incomplete but certain anomalies in pesticide occurrence can be identified. In particular, the triazines are much more prevalent in the groundwaters than their agricultural usage would lead one to expect. The limited data base gives problems with modelling the contaminant transport in groundwater. The present situation is reviewed and areas of future work necessary to fulfil the modelling needs identified. These areas of study. The historical land-use and pesticide usage; the groundwater quality data base; the pesticide transport in the unsaturated zone.  相似文献   

13.
14.
The hoverfly Episyrphus balteatus (Degeer) is one of the most abundant predators of the cabbage aphid (Brevicoryne brassicae (L.)) in brussels sprouts in Belgium. In the current laboratory study, the toxicity of several insecticides applied at maximum recommended field rates was investigated on the larvae of E. balteatus. Two- to 3-day-old larvae were confined in glass petri dishes with dry residues of freshly applied insecticides. Their mortality was checked daily until adult emergence. Sub-lethal effects were investigated by assessing the reproductive performance of adult hoverflies, originating from the surviving larvae. Of the five compounds tested, only pirimicarb caused 100% larval mortality. The corrected mortality for spinosad was 60% and the adults obtained from the surviving larvae did not succeed in laying eggs. Therefore, pirimicarb and spinosad were rated “harmful” (International Organization for Biological and Integrated Control of Noxious Animals and Plants (IOBC) category 4) for the larvae of E. balteatus. In contrast, flonicamid, thiacloprid and spirotetramat yielded much lower mortality percentages. The hatching rate of hoverfly eggs treated with flonicamid was 25.6% vs 48.7% in the control. Hence, flonicamid was rated “slightly harmful” (IOBC category 2). The fertility of adults treated as larvae with thiacloprid or spirotetramat was not affected (IOBC category 1). These laboratory trials suggest that thiacloprid and spirotetramat can be used safely in integrated pest management programs to control the cabbage aphid. Pirimicarb, spinosad and flonicamid should be tested in semi-field and field situations to assess their toxicity under more realistic conditions.  相似文献   

15.
BACKGROUND: Metsulfuron‐methyl is a low‐application‐rate sulfonylurea herbicide that is widely used to control broad‐leaved weeds in wheat. Owing to its persistent nature, its residues may be present at phytotoxic levels for the next crop in rotation. Therefore, a comparative evaluation of HPLC and bioassay techniques was made for the analysis of this herbicide in wheat field soil. RESULTS: Metsulfuron‐methyl was applied to wheat crop at different rates (4, 8 and 12 AI ha?1) at 28 days after sowing as a post‐emergence application, and the soil was analysed for metsulfuron‐methyl residues by HPLC and lentil seed bioassay techniques. The bioassay was found to be the more sensitive technique. At the recommended rate of application, 4 g AI ha?1, the bioassay technique could detect the residue up to 30 days in surface soil, while, with HPLC, residues were not detectable on the 15th day. The half‐lives of metsulfuron‐methyl by HPLC and bioassay were calculated as 6.3–7.8 and 17.5 days respectively. Under field conditions, residues of metsulfuron‐methyl were also detected in subsurface soil by the bioassay technique at trace levels, but were not detected by the solvent extraction/HPLC method. CONCLUSION: Lentil seed bioassay is a more sensitive technique than HPLC. Traces of residues detected in subsurface soil indicated the mobility of metsulfuron‐methyl into lower layers. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
17.
The complete nucleotide sequence of an infectious, insect-transmissible clone of a beet curly top virus isolate originating from Iran (BCTV-I) has been determined. The nucleotide sequence of BCTV-I shows high levels of similarity to the sequences of BCTV strains isolated from North America, and is nearly identical to the CFH strain of BCTV. The symptoms produced by BCTV-I in Nicotiana benthamiana and Beta vulgaris most closely resemble those of the CFH strain and are distinct from the other isolates. The significance of these findings with respect to the possible geographic origins and evolution of BCTV are discussed.  相似文献   

18.
The fungal pathogen Microdochium majus, causing snow mould, seedling blight and foot rot, results in severe yield losses in small grain cereals. There are few options to control this pathogen in organic production. In this study, aqueous extracts or botanical powders prepared from chamomile, meadowsweet, thyme and Chinese galls were tested in vitro against M. majus conidia germination and mycelial growth, respectively. Subsequently, three botanicals were chosen, applied as powders with different seed coating adhesives, and tested for their effect on the incidence of M. majus from naturally infected wheat seed lots and on seedling emergence from soil under controlled environmental conditions. Furthermore, seed treatments with warm water, a bacterial product or one chosen botanical were tested in a growth chamber and in a field experiment over three consecutive years. Of the botanicals tested, Chinese galls showed the highest efficacy in controlling M. majus, reducing conidia germination and mycelial growth by up to 97 and 100%, respectively, and reducing the incidence from infested seeds by up to 59%. In two growth chamber experiments, total seedling emergence increased by up to 30 and 59% compared with the control treatments following an application with Chinese galls. Under field conditions, yield increase through Chinese galls, the bacterial product and the warm water treatment was 19, 10 and 37% compared with the untreated control, respectively. This study demonstrates the potential of Chinese galls to control M. majus in wheat. Options for improved formulations or combinations of heat‐based treatments with Chinese galls are discussed.  相似文献   

19.
20.
Field experiments were conducted to study weed population shifts in long‐term conservation tillage systems. The objectives of this study were to determine weed community abundance, diversity and composition on conventional tillage (CT), minimum tillage (MT), no‐tillage with paraplow (ZT) and no‐tillage (NT) systems, and to identify species that are associated with specific tillage systems. The paraplow is a subsoiling technique that results in a deep loosening of the soil, in order to alleviate compaction in certain soils where NT is practiced. The results showed significant differences in both the composition and the abundance of weeds, depending on the tillage systems. Weed diversity, species richness and Shannon's diversity and evenness indices were higher under the conservation tillage systems than in the CT system. In addition, various weed species were associated with reduced tillage systems. For instance, Anthemis arvensis, Hirschfeldia incana and Lolium rigidum became more prevalent in the NT system, whereas Chenopodium album and Filago pyramidata dominated in the ZT system. Therefore, the application of a paraplow treatment changed the weed community in the NT system. Other weed species, such as Capsella bursa‐pastoris and Torilis nodosa, dominated in all three conservation tillage systems, whereas soil disturbance by mouldboard ploughing favoured species such as Polygonum aviculare and Phalaris paradoxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号