首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.

Purpose

Sulfonamides are widely used for the prevention and treatment of bacterial infections, hard-degraded contaminants distributed in the environment if they are discharged into the soil and water. Biochar could probably influence the geochemical behavior of ionized antibiotics in the soils.

Materials and methods

To determine the sorption/desorption of three representative sulfonamides (SAs) in soils amended with biochar, we investigated the effects of water pH, Cu2+, and dissolved humic acid on the sorption of sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadiazine (SD) onto two different soil samples (S1 pH?=?5.13 and S2 pH?=?7.33) amended with wheat straw-derived biochar (size 0.5~0.6 mm).

Results and discussion

Batch experiments showed that the sorption/desorption isotherms of SAs on soil with/without biochar followed the Freundlich model. The biochar had a strong adsorption potential for SMX, SMZ, and SD both in S1 and S2 at low water pH. Except for SMX, the presence of Cu2+ inhibited the sorption of SMZ and SD through competing hydrophobic adsorption region in soils. HA suppressed the sorption of three sulfonamides in soil S2 by electrostatic repulsion under alkaline condition. The soil leaching column experiments showed the SA transport in soils, and S1 and S2 amended with biochar (0.5 and 1.0 wt%) brought about 12–20 % increase in SMX, SMZ, and SD retention compared to the untreated soil.

Conclusions

The results indicated that the presence of biochar effectively mitigated the mobility of ionized antibiotics such as SMX, SMZ, and SD in soils, which helps us reconsider the potential risk of antibiotics in the environment.
  相似文献   

2.

Purpose

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important native tree species in China. Consecutive cropping traditionally occurs in Chinese fir plantations (CFPs), but this practice has resulted in productivity declines in subsequent rotations. This study was designed to better understand the change of soil properties in the continuous cropping CFPs.

Materials and methods

We investigated soil pH, soil organic matter (SOM), and nutrient contents in different soil layers and in rhizosphere soil (RS) and non-rhizosphere soil (NRS) under CFPs of different ages and in different rotations.

Results and discussion

In the upper (0–20 cm) soil layer, soil pH decreased, while SOM increased, beneath mature CFPs with consecutive rotations. Total nitrogen (TN), available potassium, and available phosphorus contents in the upper soil layers did not differ significantly with consecutive rotations. Soil pH in RS was significantly lower than in NRS under mature plantations of the third rotation. Soil organic matter, TN, and available nitrogen did not differ between RS and NRS. Available phosphorus in RS was consistently lower than in NRS, and was highly deficient in the third rotation.

Conclusions

We conclude that no severe soil nutrient degradation occurred in the continuous cropping CFPs examined in this study, with soil acidification and phosphorus deficiency being two primary problems observed.
  相似文献   

3.

Purpose

The synthetic soil based bioremediation approach as reasonable and sustainable practice at the farming level where desired bioremediation could be established at lower cost.

Materials and methods

Metal-tolerant bacteria from different environmental field samples, (a) a municipal dump site, (b) an agricultural field and (c) sludge of electro-plating industries, were screened and characterized. Bioremediation of metal contaminants through isolated bacteria was compared under two different conditions, synthetic soil and basic minimal media containing copper, cobalt and nickel.

Results and discussion

The pollutants arising from industrial effluents are imparting a huge negative impact on agricultural land. Microbes are predominant in heavy metal-contaminated sites, which signifies as a potential opportunity for the researchers towards bioremediation. Three bacterial species showed high metal tolerance; 16S ribosomal DNA (rDNA) analysis revealed that the organisms were Proteus vulgaris strain, Stenotrophomonas sp. and Bacillus thuringiensis. Percentage removal of metals was also analysed under different concentrations and pH.

Conclusions

The current tested methods are helpful in streamlining the natural compliance of fragile elements and its uptake into the microbial system under in vitro and in situ conditions.
  相似文献   

4.

Purpose

Nanoparticles (NPs) have received increased attention in recent past due to their unique distinct properties. Metal-based NPs are widely used in chemical and allied sector. Most of the research is directed to study the efficiency of NPs in medicine and agriculture. The aim of this review is to explore the possible threats posed by toxicity of various NPs on plants and microbial diversity.

Materials and methods

First, major sources of NPs to the environment were analyzed. The effects of metal-based NPs on the microbiota and plants are presented in this review. The results obtained by the authors during last 12 years of research are used.

Results and discussion

The exposure of soil to nanoparticles causes a decrease in soil microbial biomass and enzymatic activity, which impacts microbial community composition including yeasts, bacteria, fungi, and biological diversity. The effects of NPs on plants result in various types of abnormalities. Nanoparticles can also pose risks to human health.

Conclusions

Increased applications of NPs pose a threat to beneficial microbial communities as well as crops and soils. Thus, it is important to explore whether NPs could compromise crop yield, soil properties, soil organisms, and functional activities of soil.
  相似文献   

5.

Purpose

Occlusion of carbon (C) within phytoliths, biogenic silica deposited in plant tissues and returned to the soil, is an important mechanism for long-term terrestrial biogeochemical C sequestration and might play a significant role in mitigating climate change.

Materials and methods

Subtropical and tropical soil profiles (to 100 cm depth) developed on granite and basalt were sampled using a mass-balance approach to explore the influence of climate and lithology on soil phytolith-occluded carbon (PhytOC) accumulation.

Results and discussion

Soil PhytOC storage in the subtropics was significantly greater than in the tropics, with the soil profiles developed on granite storing greater PhytOC than soils derived on basalt. Phytolith and PhytOC content decreased with depth in all soil profiles. Phytolith content showed a positive correlation with the soil bio-available silicon in the soil profiles developed on basalt, while a negative correlation was observed in soil profiles developed on granite.

Conclusions

Climate and lithology have a significant impact on soil PhytOC sequestration. The management of forests (e.g., afforestation and reforestation) and external silicon amendments (e.g., basalt powder amendment) in soils, especially those developed on granite, have the potential to enhance PhytOC accumulation in forest ecosystems.
  相似文献   

6.

Purpose

Fungi are essential components of soil microbial communities and have a crucial role in biogeochemical processes. Alpine regions are sensitive to climate change, and the importance of changes in fungal community composition along altitudinal gradients in alpine regions is hotly debated.

Materials and methods

We used 454 pyrosequencing approaches to investigate the fungal communities at 1600, 2300, 2800, 3000, and 3900 m above sea level along an altitudinal gradient on Mount Gongga.

Results and discussion

The results showed that Agaricomycetes, Sordariomycetes, and Tremellomycetes are the dominant classes at all sampling sites. Operational taxonomic unit richness decreased with increasing altitude, and the fungal communities were clustered into three groups that corresponded to altitudes of, i.e., 1600, 2300, and above 2800 m. The evenness of fungi was not significantly correlated with altitude, whereas beta diversities were significantly correlated with altitude. The distance-based redundancy analysis and Mantel test indicated that the composition of fungal assemblages was mostly driven by altitude and temperature.

Conclusions

Our results indicated that ecological processes possibly related to altitude and temperature play an important role in structuring fungal biodiversity along the elevational gradient. Our results highlight that different microbes may respond differently to environmental gradients.
  相似文献   

7.

Purpose

Soil labile carbon (C) and nitrogen (N) pools are considered to be sensitive indicators of changes in soil C and N pools. In this study, we examined possible factors affecting spatial and seasonal variations in soil labile C and N pools in the riparian zones in Southeast Queensland, Australia.

Materials and methods

Soil and sediment samples were collected from two sites in the riparian areas. The spatial and seasonal variabilities of soil moisture, hot-water extractable organic C and total N (HWEOC and HWETN), microbial biomass C and N (MBC and MBN), and the relationships among them were examined.

Results and discussion

Soil labile C and N pools decreased along the transects in both soil depths of the two soil types, with the peak or bottom of values detected between upland slope and the riparian zone. Other factors rather than soil moisture were more important in regulating seasonal changes of soil HWEOC and HWETN except the dry-rewetting influence in November 2013. Soil moisture played a significant role in the seasonal variations of MBC and MBN. Soil labile C (HWEOC and MBC) and N (HWETN and MBN) pools at Site 1 (S1; heavy texture), which were significantly higher than those at Site 2 (S2; light texture).

Conclusions

Soil moisture would be an important driving factor for the spatial and seasonal distributions of soil labile C and N pools. Our study highlighted the importance of riparian zones as the hot spot of soil C and N dynamics, especially at the onset of rewetting dry soil in subtropical Australia.
  相似文献   

8.

Purpose

The concerns of the public on safe handling of nuclear energy power facilities have increased due to the recent nuclear plant accidents in Japan and others. Cesium, cobalt, and strontium are a few of the major radionuclides released from nuclear power plant accidents. The objectives of this study are to investigate binding, distribution, fractionation, and transformation of cesium (Cs), cobalt (Co), and strontium (Sr) in a US coastal soil under saturated paste (SP) and field capacity (FC) moisture regimes.

Materials and methods

There are four major nuclear power plants in the coast region around the northern Gulf of Mexico where coastal soil often undergoes soil moisture change. A coastal soil was taken from the middle region of these major nuclear power plants and spiked with different concentrations of cesium, cobalt, and strontium salts. The sequential selective dissolution technique was used to investigate the transformation and fractionations of these metals in the coastal soils affected by moisture regime, a key factor in the coastal environment.

Results and discussion

The adsorption kinetics showed that both Co and Sr reached the adsorption plateau even after 5 h of adsorption, indicating a fast initial adsorption process in the coastal soil. Cesium, cobalt, and strontium were dominantly presented in the soluble and exchangeable form (EXC) (Cs?>?Co and Sr), which linearly increased with the addition levels, possessing the high bioavailability, mobility, and ecotoxicity. Saturated regime significantly reduced the soluble and exchangeable form compared to field capacity moisture regime.

Conclusions

The current study provides the fundamental understanding for designing the cost-effective remediation technology to remediate these metals in coastal soil by targeting on the soluble and exchangeable forms and better prepare the USA for future potentially nuclear power plant accidents.
  相似文献   

9.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   

10.

Purpose

Urban soils’ variability in the vertical direction presumably affects hydrological parameters at the timescale. Moreover, horizontal soil alterations at small spatial scales are common in urban areas. This spatio-temporal variability and heterogeneity of soil moisture and the possible influencing factors were to be described and quantified, using data of a soil monitoring network in the city of Hamburg, Germany.

Materials and methods

Soil moisture data from ten observation sites within the project HUSCO was evaluated for two different years. The sites were located within districts with different mean groundwater table depths and characteristic urban soil properties. Soil hydrological simulations with SWAP were calculated for a selected site.

Results and discussion

The temporal evolution of soil water content and tension for the sites was very distinct, related to soil substrate, organic matter content, and groundwater table depth. Impacts of different vegetation rooting depths, the soil substrates’ type, and to some extent the degree of disturbance on soil water dynamics could be identified. An impact of groundwater table depth on the water content of the topsoil during low-precipitation periods could be assumed. The comparison of the results of soil hydrological simulations with empirical data indicated an overestimation of infiltration and percolation for the given soil substrates.

Conclusions

While soil properties are mainly determinant for the long-term progression of soil hydrology, local site factors affect the short-term regime. A shallow groundwater table contributes to more constant water dynamics while the relative decrease of water during a dry phase is diminished.
  相似文献   

11.

Purpose

The objective of this review is to survey critically the results obtained by the application of laser-induced fluorescence spectroscopy (LIFS) and laser-induced breakdown spectroscopy (LIBS) to the evaluation of the humification degree (HD) of soil organic matter (SOM) directly in untreated, intact whole soils.

Materials and methods

A large number of soils of various origin and nature, either native or under various cultivations, land use, and management, at various depths, have been studied to evaluate the HD of their SOM directly in intact whole samples. The LIFS spectra were obtained by either a bench or a portable argon laser apparatus that emits UV-VIS light of high power, whereas the LIBS spectra were obtained using a Q-switched Nd:YAG laser at 1064 nm.

Results and discussion

The close correlations found by comparing HLIF values of whole soil samples with values of earlier proposed humification indexes confirmed the applicability of LIFS to assess the HD of SOM in whole soils. The high correlation found between HDLIBS values and HLIF values showed the promising potential of LIBS for the evaluation HD of SOM.

Conclusions

The LIFS technique shows to be a valuable alternative to evaluate the HD of SOM by probing directly the whole solid soil sample, thus avoiding the use of any previous chemical and/or physical treatments or separation procedures of SOM from the mineral soil matrix. The emerging application of LIBS to evaluate the HD of SOM in whole soils appears promising and appealing due to its sensitivity, selectivity, accuracy, and precision.
  相似文献   

12.

Purpose

We investigated the effect that ashes may have on the soil microbial activity. Our hypothesis is that different wood ashes and different proportions of them could have beneficial or detrimental effects depending on the applied dose.

Materials and methods

Dehydrogenase activity and soil oxygen consumption were used to evaluate the potential improvement of soil conditions through the application of two different wood ashes coming from industrial waste. Different ash proportions and time dependence have been used to make comparisons. The respiration curves obtained through a closed-jar incubation experiment were well fitted by a sigmoidal function, the derivative of which yields the time evolution of the consumption rate.

Results and discussion

The results indicate that the dehydrogenase activity and soil oxygen consumption are very sensitive to the presence of ashes in the soil, and the reached values of both are linked to the applied dose of them. In our research, soil oxygen consumption is time and rate dependent of ash application. The curves show that parameter was affected by the ashes in different way, raising the respiration rate, and stretching the biological activity period.

Conclusions

Dehydrogenase activity and soil oxygen consumption are very sensitive to the presence of ashes and can be used to assess their potential use as amendments. The results of this paper can contribute to the required knowledge in order to use ashes in a sustainable way. Ashes coming from olive marc and vine shoots may affect positively the soil respiration and, therefore, the soil fertility, if they are applied in moderate amounts.
  相似文献   

13.

Purpose

Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.

Materials and methods

In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.

Results and discussion

Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).

Conclusions

The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.
  相似文献   

14.

Purpose

Soil microbes control the bioelement cycles and energy transformation in forest ecosystems, and are sensitive to environmental change. As yet, the effects of altitude and season on soil microbes remain unknown. A 560 m vertical transitional zone was selected along an altitude gradient from 3023, 3298 and 3582 m, to determine the potential effects of seasonal freeze-thaw on soil microbial community.

Materials and methods

Soil samples were collected from the three elevations in the growing season (GS), onset of freezing period (FP), deeply frozen period (FPD), thawing period (TP), and later thawing period (TPL), respectively. Real-time qPCR and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) were used to measure the abundance and structure of soil microbial community.

Results and discussion

The bacterial, archaeal, and fungal ribosomal DNA (rDNA) copy numbers decreased from GS to freezing stage (FP and FPD) and then increased in thawing stage (TP and TPL). Similarly, the diversity of microbial community varied with seasonal freeze-thaw processes. The diversity index (H) of the bacterial and archaeal communities decreased from GS to FP and then increased to TPL. The fungal community H index increased in the freezing process.

Conclusions

Our results suggested that abundance and structure of soil microbial community in the Tibetan coniferous forests varied by season and bacterial and archaeal communities respond more promptly to seasonal freeze-thaw processes relative to fungal community. This may have important implications for carbon and nutrient cycles in alpine forest ecosystems. Accordingly, future warming-induced changes in seasonal freeze-thaw patterns would affect soil nutrient cycles via altering soil microbial properties.
  相似文献   

15.

Purpose

Soil washing with chelators is a viable treatment alternative for remediating multi-contaminated soils. The aim of this study was to investigate the removal efficiencies of Cd, Zn, Pb, and Cu in alkaline and acid multi-metal-contaminated soils by washing with the mixed chelators (MC).

Materials and methods

The batch experiments were carried out to evaluate the removal efficiencies of heavy metals in contaminated soils by the MC with different molar ratios of EDTA, GLDA, and citric acid, and evaluated the washing factors, including contact time, pH, MC concentration, and single and multiple washings at the same MC dose, on the removal efficiencies.

Results and discussion

Results showed that the removal efficiencies for Cd, Zn, Pb, and Cu by the MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) were as much as those of the only EDTA washing from both soil at the same application dose of total chelators; moreover, the application dose of EDTA decreased by 80%. For the alkaline-contaminated soil, the removal efficiencies of Cd, Zn, Pb, and Cu decreased with the increasing of the solution pH, which was opposite to acid-contaminated soil. This was attributed to that the metal-ligand complex could be obviously re-adsorbed on the soil surface sites, particularly in low pH values. The removal efficiencies of Cd, Zn, Pb, and Cu depended on MC concentration. A higher MC concentration led to a more effective removal of Cd, Zn, Pb, and Cu in alkaline-contaminated soil; however, their changes were slightly increased in acid-contaminated soil. At the same dose of MC, single washing with higher MC concentration might be favorable to remove heavy metals, moreover, with much less wastewater generation.

Conclusions

The MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) may be a useful, environmentally friendly, and cost-effective chelators to remediate heavily multi-metal-contaminated soil.
  相似文献   

16.

Purpose

Field portable X-ray fluorescence (FPXRF) technology can offer a rapid and cost-effective determination of the total elemental concentrations in soils. The aims of this study were (i) to test the capability of FPXRF to predict the element concentrations of a very large soil sample set and (ii) to assess the influence of soil moisture, known to strongly affect the quality of FPXRF analyses.

Materials and methods

A large set of 215 soil samples were analysed for Ba, Ca, Cr, Cu, Fe, Mn, Pb, Rb, Sn, Sr and Zn by inductively coupled plasma atomic emission spectroscopy (ICPAES) after aqua regia digestion and with a FPXRF analyser using a short acquisition time. Soil samples were then saturated with ultrapure water to test the influence of soil water content on FPXRF signal.

Results and discussion

For all of the elements, the total concentrations obtained with ICPAES and FPXRF showed a very high degree of linearity, indicating that FPXRF can effectively predict element concentrations in soils. A Lambert-Beer law was successfully used to describe the decrease in the FPXRF concentrations with increasing soil moisture. The attenuation coefficient obtained for each element allowed us to satisfactorily predict the FPXRF concentrations of samples for water contents as high as 136.8 %.

Conclusions

These results show that the effect of water on signal attenuation can be corrected and that FPXRF may gradually replace chemical methods for the analysis of environmental samples.
  相似文献   

17.

Purpose

Land preparation (e.g., leveled ditches, leveled benches, adversely graded tableland, and fish-scale pits) is one of the most effective ecological engineering practices to reduce water erosion in the Loess Plateau, China. Land preparation greatly affects soil physicochemical properties. This study investigated the influence of different land preparation techniques during vegetation restoration on soil conditions, which remained poorly understood to date.

Materials and methods

Soil samples were collected from depths of 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm, in the typical hilly watershed of Dingxi City, Loess Plateau. Soil bulk density (BD), soil organic matter (SOM), and total nitrogen (TN) were determined for different land preparations and vegetation type combinations. Fractal theory was used to analyze soil particle size distribution (PSD).

Results and discussion

(1) The effect of land preparation on soil properties and PSD varied with soil depth. For each land preparation category, SOM and TN values showed a significant difference between the top soil layer and the underlying soil depths. (2) The fractal dimension of PSD showed a significant positive correlation with clay and silt content, but a significant negative correlation with sand content. (3) The 20 cm soil layer was a boundary that distinguished the explanatory factors, with land preparation and vegetation type as the controlling factors in the 0–20- and 20–100-cm soil layers, respectively.

Conclusions

Land preparation and vegetation type significantly influenced soil properties, with 20 cm soil depth being the boundary for these two factors. This study provided a foundation for developing techniques for vegetation restoration in water-limited ecosystems.
  相似文献   

18.

Purpose

The increasing reuse of wastewater for irrigation introduces surfactants and antibiotics into the environment. How these two kinds of compounds interact with regard to their sorption processes in soil is not clear.

Materials and methods

We performed batch experiments to investigate the sorption of linear alkylbenzene sulfonates (LAS) and its effect on sorption of sulfamethoxazole and ciprofloxacin in irrigated and non-irrigated soils with different organic matter (OM) contents.

Results and discussion

LAS sorption was non-linear in the presence of the antibiotics, and as general trend, it increased with rising OM content of soils. Free LAS was also removed from solution by complexation with Ca2+. Dissolved organic compounds released from soils with OM contents ≥18.4 g kg?1 further reduced LAS sorption. Sorption of sulfamethoxazole was reduced by LAS sorption only in one soil with a small OM content of 9.5 g kg?1.

Conclusions

The strong sorption of ciprofloxacin is not affected by LAS. Sulfamethoxazole sorption only competes with LAS sorption in organic matter-poor soils. Accumulation of organic matter in soils, for example due to long-term wastewater irrigation, provides extra sorption capacity for LAS and sulfamethoxazole so that competition for sorption sites is reduced.
  相似文献   

19.

Purpose

The use of composted sewage sludge and limestone outcrop residue in land rehabilitation, soil improvement, and technosol making can influence the mobility of nitrogen compounds in groundwater.

Materials and methods

This experiment analyzed this source of possible pollution under an experimental design based on the use of columns (0–30 cm) formed by both wastes and a heavy irrigation regime. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of nitrate, nitrite, and ammonium in the leachates was checked.

Results and discussion

The environmental risk due to the presence of nitrogen species associated with the use of these materials was very low in general, although nitrate was the most important compound affected by the use of sewage sludge compost and saline water.

Conclusions

The combination of saline water for irrigation with the compost has to be seriously considered as a source of pollution for surface and ground waters, and the use of both resources may be a key factor to be studied (low-quality water and sewage sludge compost).
  相似文献   

20.

Purpose

Bacteria able to extracelluar respiration, which could be enriched in the anode of microbial fuel cells (MFCs), play important roles in dissimilatory iron reduction and arsenic (As) desorption in paddy soils. However, the response of the bacteria to As pollution is unknown.

Materials and methods

Using soil MFCs to investigate the effects of As on anode respiring bacteria (ARB) communities in paddy soils exposed to As stress. The soil MFC performances were evaluated by electrochemical methods. The bacterial community compositions on anodes were studied using Illumina sequencing.

Results and discussion

In wet 1 phase, polarization curves of MFCs showed cathode potentials were enhanced at low As exposure but inhibited at high As exposure. In the meantime, anode potentials increased with As levels. The dry-wet alternation reduced As levels in porewater and their impacts on electrodes microorganisms. Arsenic addition significantly influenced the anode microbial communities. After dry-wet cycles, Deltaproteobacteria dominated in the anode with high As.

Conclusions

The dynamic changes of the communities on cathodes and anodes of soil MFCs in paddy soils with different As addition might be explained by their different mechanisms for As detoxification. These results provide new insights into the microbial evolution in As-contaminated paddy soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号