首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The objective of this work was to identify hyperaccumulator plants and evaluate their capacity on copper mine tailings in the Antofagasta Region (Chile), considered one of the most arid in the world.

Materials and methods

Two native plant species, Gazania rigens and Pelargonium hortorum, were grown during 11 weeks on mine tailings. The physico-chemical characterization of the mine tailings under study indicated that the substrate required conditioning to support a phytoremediation system. In this respect, organic and inorganic amendments and mycorrizhal fungi were added to the substrate. Three treatments were designed to assess the effects of the amendments through an analysis of variance.

Results and discussion

Indicators of plant growth and development were measured weekly, and concentrations of Cd, Cu, Fe, Mn, Pb, Al, and Zn in roots of tailing-grown plants and substrate were measured at the end of the experiment.

Conclusions

The results were used to determine the bioconcentration factor (BCF), which demonstrated that both species act as excluders of Fe, Mn, Pb, Al, and Zn. In addition, it was found that both species present characteristics of potential accumulators of Cu.
  相似文献   

2.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

3.

Purpose

Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause–effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of São Paulo (Guarujá, Brazil).

Materials and methods

Soil samples were collected at low tide along two transects within the Crumahú mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (<2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction.

Results and discussion

The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (~80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals.

Conclusions

The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.
  相似文献   

4.

Purpose

The purpose of this study was to elucidate the mechanisms for pectin-enhanced adsorption of heavy metal cations on variable charge minerals.

Materials and methods

Batch experiments were conducted to investigate the adsorption of pectin and copper(II) by amorphous Fe/Al hydroxides. The morphology, mineralogy, and functional groups of pectin–Fe/Al hydroxides were examined using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy analysis.

Results and discussion

The amount of pectin adsorbed by amorphous Al(OH)3 was much greater than that by amorphous Fe(OH)3 at pH values between 3.5 and 6.5 due to the higher positive charge density on Al(OH)3 and greater electrostatic attraction between the hydroxide and pectin compared with Fe(OH)3. The addition of pectin decreased the positive surface charge on amorphous Fe and Al hydroxides. The presence of pectin enhanced the adsorption of Cu(II) by the Fe and Al hydroxides. The increase in Cu(II) adsorption on amorphous Fe hydroxide was more obvious at low pH values than at higher pH values, while an opposite changing trend was observed for amorphous Al hydroxide. At pH 3.9, 4.3, and 4.9, pectin increased Cu(II) adsorption by Fe hydroxide from 24.4, 76.6, and 177.0 mmol/kg to 61.6, 98.8, and 192.0 mmol/kg, i.e., Cu(II) adsorption was increased by 37.2, 22.2, and 15.0 mmol/kg, respectively. At pH 4.3 and 4.9, pectin increased Cu(II) adsorption by Al hydroxide from 3.7 and 27.0 mmol/kg to 17.3 and 69.4 mmol/kg, i.e., Cu(II) adsorption was increased by 13.6 and 42.4 mmol/kg, respectively. The greater adsorption of pectin by Al hydroxide was mainly responsible for the larger enhancement of pectin on Cu(II) adsorption on Al hydroxide at higher pH values compared with Fe hydroxide.

Conclusions

The adsorption of pectin on Fe and Al hydroxides decreased the positive charge on the hydroxides and thus enhanced the adsorption of Cu(II) by the hydroxides.
  相似文献   

5.

Purpose

Ferrolysis is a soil-forming process, which involves destruction of clay minerals due to cyclic reduction and oxidation in acidic and periodically wet soils. The main objectives of this study were as follows: (1) to determine the influence of redox processes on clay mineral transformation in Retisols (Albeluvisols) in the Carpathian Foothills in Poland and (2) to verify the occurrence of ferrolysis in Retisols showing various degrees of bleaching.

Materials and methods

Twelve representative soil profiles were selected for analysis. All were formed entirely from loess except for two profiles, in which the lowermost horizons (2C) had developed from weathered flysch rocks residuum. Soil mineral analysis was done using x-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and Mössbauer spectroscopy (MS).

Results and discussion

The obtained results indicate that the qualitative and quantitative mineral compositions of the clay fraction in the E and Eg horizons obtained from Retisols in the Carpathian Foothills exhibiting marked differences in bleaching (strong, moderate, weak, and lack of bleaching) caused by periodic stagnation of water above a slowly permeable fragipan and cyclic redox processes are the same. The E and Eg horizons are characterized by the presence of 2:1 clay minerals with likely organic interlayer fillings, dioctahedral mica, kaolinite, and chlorite.

Conclusions

The results indicate that (1) redox processes occurring in the soils do not affect clay mineral transformation in Retisols of the Carpathian Foothills in Poland and (2) ferrolysis is not the main soil-forming process operating in these soils. This is most likely because iron-bearing minerals are not abundant in the Retisols and/or undergo eluviation to the lower part of the soil profiles. The lower content of the clay fraction in the E and Eg horizons versus that in the lower soil horizons of the Retisols is related to clay illuviation (lessivage), and not to clay decomposition due to ferrolysis.
  相似文献   

6.

Purpose

Brazilian soils that present extremely hard sub-superficial horizons when dry and friable when humid are similar to the Australian and South African hardsetting horizons whose hardness can be mainly related to low crystallinity. Studies involving refinement by the Rietveld method with X-ray diffraction (RM-XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and their relation have not been carried out in hardsetting horizon soils. Thus, the objective of this study is to obtain information about the kaolinite in the hardsetting horizon of a Yellow Argisol clay fraction, taking into consideration the results of isomorphic substitution, crystallite average size, and microstrains, relating them to particle image analysis regarding their morphology and size.

Materials and methods

Soil samples were collected in the hardsetting horizon of a Yellow Argisol in the Coastal Tablelands region, which covers the whole Brazilian Northeast coast and part of the Southeast region. The sample was powdered, sieved, and submitted to dispersion and physical fractioning process by sedimentation. The clay fraction was analyzed by RM-XRD, AFM, and SEM techniques.

Results and discussion

The RM-XRD provided improvement of indices with isomorphic substitutions in the goethite [Fe0.70Al0.30O(OH)], kaolinite [Al1.44Fe0.56Si2O5(OH)4], and halloysite [Al1.42Fe0.58Si2O5(OH)4]; 29 nm crystallite average size; 5 × 10?3 microstrain; and 49.5% kaolinite. AFM analyses indicated particle average size from 80 to 250 nm and average height from 60 to 80 nm. By relating this data, it was possible to estimate that the particles under analysis are kaolinite composed of 3 to 9 crystallites and stacking of 88 to 112 layers.

Conclusions

The process, analyses, and comparisons such as crystallographic and morphologic information about the kaolinite mineral particles contribute to the comprehension of the hardsetting horizon soil nature as well as other soils that present minerals with a high degree of isomorphic substitution.
  相似文献   

7.

Purpose

The production of technosols to remediate polluted or sealed urban soils to sustain new green areas is mainly empirical. For this, our research aims to contribute with the scientific knowledge base for purpose designing of technosols. Since iron minerals play an important role for many different functions of soils, we simplified a technique to incorporate and stabilize iron minerals in a substrate: a sand coated with an amorphous iron (hydr)oxide, a 2-line ferrihydrite (2L-FH).

Materials and methods

The 2L-FH was precipitated by neutralization of a concentrated FeCl3 solution. The suspension was homogeneously mixed with the sand and the mixture was dried at 35 °C. The mechanical stability of the 21 2L-FH-coated sand was determined by shaking the aggregates in water for 0, 1, 10, 100, and 1 000 min. The degree of coating detachment and the properties of the coating after shaking were characterized through (a) Fe content, (b) zeta-potential and particle size of the detached particles, (c) the specific surface area (SSA) of the coated sand, and (d) its surface structure using scanning electron microscopy (SEM). A phosphate adsorption isotherm was performed to measure the P-sorption capacity of the shaken samples and to test the 2L-FH-quartz attachment stability against the surface charge reduction of the 2L-FH associated with P adsorption.

Results and discussion

A reduced Fe loss (30 %) and smaller sizes of the coating detached particles in the sample shaken for 1 000 min indicate that a fractioning and reattachment of these aggregates occurred during the agitation process, resulting in a smoother surface (SEM), and a larger SSA and P-sorption capacity. The coated shaken samples showed P-adsorption capacities (5.3–6.34 μmol P g?1) comparable to high loadings of phosphate in soils, and low detachment of Fe (7–14 %) in spite of negativity surface charge increase.

Conclusions

The practical novel coating process along with the 1 000-min shaking produced a mechanical resistant and P-adsorptive effective coated sand that could sustain the needs of plants in further experiments.
  相似文献   

8.

Purpose

Incipient motion plays an instrumental role in understanding various aspects of sediment transport, such as river bed aggradation and degradation, channel design, bank erosion, scour around bridge piers, and water quality issues.

Materials and methods

Experiments were conducted to study the incipient motion of gravel particles in three types of bed material, i.e., gravels only, silt-gravel mixture, and clay-silt-gravel mixture. The clay content varied from 10 to 50% in the clay-silt-gravel mixture while silt and gravel were in equal proportion by weight. Samples were taken out from the prepared cohesive bed for the determination of their bulk density, unconfined compressive strength, and water content. The incipient motion was observed visually, which corresponded to the beginning of movement of gravel particles in the mixture. The shear stress corresponding to incipient motion was computed using measured flow depth and slope of water surface. The physical appearance of the top layer of cohesive bed was observed visually at the end of experiment.

Results and discussion

The effects of clay content, water content, unconfined compressive strength, and bulk density of the mixture on the critical shear stress were investigated using the data collected in this study on clay-silt-gravel mixture along with the data from previous studies. A relationship is proposed for the computation of critical shear stress of gravel particles in the cohesive mixtures. The physical appearance of the top surface of the bed for clay-silt-gravel mixture has also been investigated with varying percentages of clay content in the mixture.

Conclusions

High clay percentage significantly increased the critical shear stress. The presence of silt lowers the critical shear stress especially when there is low clay content (up to 20%) in the mixture. The clay content along with the bulk density was found to be the dominant parameters that affect the incipient motion of the gravel particles in the cohesive mixtures. The proposed relationship for critical shear stress was found to be in good agreement with the observed ones.
  相似文献   

9.

Purpose

The purpose of the present study is to examine the effect of phosphate on the aggregation kinetics of hematite and goethite nanoparticles.

Materials and methods

The dynamic light scattering method was used to study the aggregation kinetics of hematite and goethite nanoparticles.

Results and discussion

Specific adsorption of phosphates could promote aggregation through charge neutralization at low P concentrations, stabilize the nanoparticle suspensions at medium P concentrations, and induce aggregation through charge screening by accompanying cations at high P concentrations. Two critical coagulation concentration (CCC) values were obtained in each system. In NaH2PO4, the goethite CCC at low phosphate concentrations was smaller than hematite and vice versa at high phosphate concentrations. Stronger phosphate adsorption by goethite rapidly changed the zeta potential from positive to negative at low phosphate concentrations, and the zeta potential became more negative at high phosphate concentrations. The clusters of hematite nanoparticles induced by phosphate adsorption had an open and looser structure. Solution pH and the phosphate adsorption mechanisms in NaH2PO4, KH2PO4, and Na3PO4 solutions affected zeta potential values and controlled the stability of hematite suspensions during aggregation. High pH and preference for non-protonated inner-sphere complexes in Na3PO4 solution decreased the zeta potential of positively charged hematite and promoted aggregation. Activation energies followed the order NaH2PO4 > KH2PO4 > Na3PO4 at low P concentrations. K+ was more effective than Na+ in promoting hematite aggregation due to the non-classical polarization of cations.

Conclusions

Phosphate can enhance or inhibit the aggregation of hematite and goethite nanoparticles in suspensions by changing surface charge due to specific adsorption onto the particles. The phosphate-induced aggregation of the nanoparticles mainly depended on the initial concentration of phosphate.
  相似文献   

10.

Purpose

This study used multi-element signatures of stream sediments to assess both natural and human-induced impact on fluvial system in the River Neretva delta receiving environment over time. The river basin actually comprises several sub-catchments, and the geochemical features of major elements, trace metals radiometric and mineralogical characterisation of river bed sediments were used to assist the interpretation of the environment of deposition and its subsequent modifications caused by various anthropogenic pressures within the river basin.

Materials and methods

Five sites were chosen for sediment sampling at key locations within the study area with assumed undisturbed, continuous sedimentation process. At each of the sites, three representative cores were taken by scuba divers. Sample sites were selected in order to reflect the influence of different sub-catchments they belong to and the land-use pattern of the surrounding area. Samples were analysed for pH, redox-potential, granulometry, mineralogy, thermogravimetry, major and trace element concentrations and radionuclide activities. The univariate and multivariate statistics were applied. The geochemical normalisation of data was done using Al, the procedure based on calculation of the regression line of the metal on the normaliser followed by testing the ratios metal/normaliser on all data-points.

Results and discussion

All studied sediments are classified as silt, ranging from clayey silt to silt and sandy silt. Mineralogically, the sediments were dominated by carbonates and quartz. The chemical contaminant data are generally of good quality, mostly below guideline levels. Sedimentation rates were estimated using vertical distribution of 137Cs activities. Normalisation of TMs done by using Al shows strong R 2 adj values for the regressions of Al and V, Al and Cr, and Al and Ni. However, Al cannot fairly explain the fluctuation of the concentrations of Cd, Cu, Pb and Zn in sediment cores from all of the sampling sites. Generally, inorganic scavengers such as clay minerals followed by Fe and Mn oxides and S (pyrite and gypsum) seem to be dominant factors controlling TMs in studied sediments.

Conclusions

Although the River Neretva delta occupies a rather small area, the geochemical features of major and trace elements and 137Cs activities show complex sediment provenances. Each of the sampling sites reflect exactly different effects of anthropogenic intervention that particularly refer to the changes in river morphology and ecology, along with the altered flow regimes within the catchment on sediment loads and quality.
  相似文献   

11.

Purpose

The present paper concerns the distribution and mobility of heavy metals (Cu, Pb, Zn and Fe) in the soils of some abandoned mine sites in Italy and their transfer to wild flora.

Materials and methods

Soils and plants were sampled from mixed sulphide mine dumps in different parts of Italy, and the concentrations of heavy metals were determined.

Results and discussion

The phytoremediation ability of Salix species (Salix eleagnos, Salix purpurea and Salix caprea), Taraxacum officinale and P?lantago major for heavy metals and, in particular, zinc was estimated. The results showed that soils affected by mining activities presented total Zn, Cu, Pb and Fe concentrations above the internationally recommended permissible limits. A highly significant correlation occurred between metal concentrations in soils.

Conclusions

The obtained results confirmed the environmental effects of mine waste; exploring wild flora ability to absorb metals, besides metal exploitation, proved a useful tool for planning possible remediation projects.
  相似文献   

12.

Purpose

The particle-size distribution of runoff sediment is important in understanding, characterizing and modeling the transport behavior of sediment and sediment-associated chemicals. The objective of this study was to investigate the particle-size distribution of sediments eroded from three soils in China under natural rainfall.

Materials and methods

Each of the three soils was packed to a depth of 30 cm in a 20?×?2.1 m runoff plot. Sediments yielded in nine natural rainfall events were analyzed for their particle-size distribution prior to and following dispersion.

Results and discussion

The sediment size measured in the undispersed condition was always larger than the one determined after chemical dispersion, indicating that part of the sediment was eroded in aggregated form. The degree of sediment aggregation depended on the clay content and the organic matter content of the sources. The mean sediment size quantified by mean weight diameter linearly increased with sediment yield for the two soils with relatively high clay content. The rate of increase was greater in the undispersed condition than that in the dispersed condition for these two soils. Comparing sediments to the corresponding source soil, the results of mean weight diameter and enrichment ratio both revealed that aggregate-size distribution was more sensitive to soil erosion than the primary particle-size distribution. Small aggregates, rather than the primary particles, were selectively eroded in the rainfall events.

Conclusions

These findings support the use of both dispersed and undispersed sediment-size distributions for the characterization of sediment transport and the associated sediment-bound nutrients and contaminants.
  相似文献   

13.

Purpose

The phosphate adsorption on natural adsorbents is of particular importance in regulating the transport and bioavailability of phosphates in environmental system. In soils, oxides are often associated with organic matter and form mineral-organic complexes. The aim of the present paper was to investigate the mechanisms of phosphate adsorption on these complexes.

Materials and methods

Phosphate adsorption on uncoated and humic acid (HA)-coated iron oxide complexes was investigated at different ionic strengths and pH by isotherm experiments and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

Results and discussion

Results showed that HA-coated iron oxide complexes caused a decrease in the specific surface area (SSA) and the isoelectric point (IEP) of oxides. Phosphate adsorption on iron oxides was insensitive to changes of ionic strength, while it increased on the complexes with increasing ionic strength. The presence of HA decreased the maximum adsorption and the affinity of phosphate on the complexes. The zeta potential of phosphate-bound iron oxides linearly reduced with the increment of phosphate surface coverage, while the zeta potential of complexes with adsorbed phosphate kept at the same level. ATR-FTIR analysis suggested the formation of phosphate-metal complexation. The presence of HA promotes the formation of the monodentate phosphate complexes at pH 4.5 and significantly influenced phosphate species at pH 8.5.

Conclusions

The amount of phosphate adsorbed was reduced, and the phosphate speciation was also influenced when phosphate was adsorbed on HA-coated iron oxide complexes compared with phosphate adsorption on pure goethite and hematite.
  相似文献   

14.

Purpose

The Al forms on maize and soybean roots were investigated to determine the main factors affecting the distribution of Al forms and its relationship with Al plant toxicity.

Materials and methods

Solution culture experiments were conducted to obtain the fresh roots of maize and soybean. KNO3, citric acid, and HCl were used to extract the exchangeable, complexed, and precipitated forms of Al on the roots.

Results and discussion

The complexed Al was higher than the exchangeable and precipitated Al. Root CECs of soybean and maize were 77 and 55 cmol kg?1, and functional groups on the soybean roots (262.4 cmol kg?1) were greater than on maize roots (210.8 cmol kg?1), which resulted in more exchangeable and complexed Al on soybean roots than on maize roots, and was one of the reasons for the increased Al toxicity to soybean. The total and exchangeable Al were the highest on the plant root tips and decreased gradually with increasing distance from the tips. Ca2+, Mg2+, and NH4 + cations reduced the exchangeable Al on the roots. Oxalate and malate also reduced the adsorption and absorption of Al by roots, and the effect of oxalate was greater than malate.

Conclusions

Higher exchangeable and complexed Al on plant roots led to increased Al plant toxicity. Ca2+, Mg2+, and NH4 + and oxalate and malate can effectively alleviate Al plant toxicity.
  相似文献   

15.

Purpose

Adsorptive interaction at the solid-water interface plays an important role in the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. This study aims to investigate the contributions of heterogeneous morphology to P adsorption onto mineral particles.

Materials and methods

The dominant minerals in Yellow River sediment, quartz, k-feldspar, and calcite are investigated with adsorption experiments and microscopic examinations. Taylor expansion is applied to quantitatively characterize the heterogeneous surface morphology.

Results and discussion

The results reveal that locally concave or convex micro-morphology characterized by the second derivative term of the Taylor expansion, F 2, can be related to adsorption capacity due to its effect on surface-charge density and distribution. The distribution of adsorbed P as a function of F 2 was determined for selected particles composed of each of the pure minerals and was fit to a Weibull distribution. Each mineral was characterized by F 2a , the weighted average value of F 2, and Weibull distribution factors, and correlated with sorption isotherms. The developed relationships were used to accurately predict adsorption onto individual particles as well as pure mineral samples.

Conclusions

Mineral particles have complex surface morphology, which affects the interface P adsorption. Micro-morphological characterization of F 2 and F 2a can be used to predict adsorption onto the pure minerals, and this study provides physical basis for predicting adsorption on sediment particles composed of these minerals.
  相似文献   

16.

Purpose

Long-term tea plantation (Camellia sinensis L.) could markedly change the pools of total fluoride (T-F) in soil extractable fractions. However, the effects of different chronosequence phases on the changes of fluoride fractions in these plantations are poorly understood.

Materials and methods

In this study, we have investigated the distribution of extractable fluoride fractions in four differently aged tea plantations (16, 23, 31, and 53 years old, respectively), in Zhongfeng Township of Ming-shan County, Sichuan, Southwest China. This study aimed to determine the effects of the age of various tea plantations with respect the contents of T-F, also considering the water-soluble fluoride (Ws-F), the exchangeable fluoride (Ex-F), the Fe/Mn oxide-bound fluoride (Fe/Mn-F), the organic matter-bound fluoride (Or-F), and the residual fluoride (Res-F) within soil aggregates.

Results and discussion

The T-F, Ws-F, Ex-F, and Res-F contents increased with the decreasing of particle size except for Fe/Mn-F and Or-F. Along with the increase of tea plant life, the contents of Ws-F and Ex-F within soil aggregates gradually increased. In addition, the trends of extractable Fe/Mn-F and Or-F were opposite to that of highly available fluoride after 23 years.

Conclusions

The results of this study show that fluoride is easily transformed into highly available phases in long-term tea plantations, improving the absorption of fluoride for tea plants.
  相似文献   

17.

Purpose

Suspended particulate matter (SPM) plays an important role in the transport and fate of contaminants in the environment. To better understand the relationships between contaminants and SPM, SPM properties, and their variations with flow regime, river size, land use, and season should be considered.

Materials and methods

The grain size distribution, elemental composition, and mineralogy of SPM from different stations along the Moselle River (Lorraine, France) were investigated at the particle scale during different flow regimes. The resulting data were compared with the elemental composition of the dissolved compartment to understand the role of particles in element transport.

Results and discussion

The grain size distribution, elemental composition, and mineralogy of SPM along the Moselle River and during different flow regimes showed only slight variations, except for the Fensch and Orne tributaries, two rivers that were impacted by inherited steel-making industrialization and different land use. In the Moselle River, SPM mainly consisted of clay minerals, while in Fensch and Orne Rivers, SPM mainly consisted of multiple types of anthropogenic particles. The diffuse urbanization gradient was hardly recognized based on the Trace Metal Element (TMEs) content in the river SPM, while the rivers impacted by the steel industries had greater TME contents. Finally, the TME content in the Moselle SPM was more strongly influenced by water flow than by the position of sampling on the linear reach of the Moselle River. The partitioning of TMEs in the particles and water at the main Moselle station (Frouard) revealed that SPM predominantly contributed to TMEs transport.

Conclusions

This study confirmed that catchment geology greatly contributed to the SPM composition in the mean-sized rivers. In addition, the high anthropogenic pressure could be deciphered for small tributaries. Furthermore, this study allowed us to observe the high contribution of particles to TMEs and Rare Earth Element (REEs) transportation.
  相似文献   

18.

Purpose

Soil is composed of particles of different sizes. A fraction of soil particles with different sizes has many vital effects on soil properties such as soil texture, soil porosity, and soil nutrient content. We intended to explore what change took place in soil particle distribution along the chronosequence of restoration and to address what implication this change has for ecosystem restoration.

Materials and methods

Six restoration ecosystem sites were selected to form a chronosequence in a sandy desertified region, northern China. We examined the relative content of soil particles with different sizes and established an index of enrichment ratio to reflect the change trend of soil particle size fraction.

Results and discussion

It was showed that soil substrate in this region is mainly composed of coarse sand (>0.25 mm) and fine sand (0.25–0.10 mm), the fraction of which are averagely 23.62 and 57.07 %, respectively. These characteristics make soil coarse, loose and erodible, and to be one of the reasons why sandy desertification was quickly developed in this region. In sandy desertification process, the grades of soil particles were air-classified. Fine sand was strongly enriched 1.36 times than average level, while very fine sand (0.10–0.05 mm) and silt and clay (<0.05 mm) were strongly diluted 0.14 and 0.22 times than average level, respectively. Along with the chronosequence of restoration, very fine sand and silt and clay were deposited and markedly enriched. This change in soil particle size fraction along the chronosequence has many fundamental roles for the subsequent restoration succession of sandy land ecosystem, such as promoting plant growth, strengthening soil anti-erodibility, leading to species replacement and community succession.

Conclusions

From this research, it could be concluded that the response of soil particle size fraction to ecological restoration in sandy desertified lands is ecologically valuable, demonstrating that a positive cycle between plant and soil was formed to strengthen the stability of soil-plant system, and the ecosystem has the ability of self-recovering or self-organizing.
  相似文献   

19.

Purpose

Chromium, a potentially harmful element, occurs commonly within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid-phase chemical speciation of Cr and its environmental mobility. In this study, we adopt an integrated geochemical approach to investigate and determine the long-term fate of Cr in the urban sediment cascade.

Materials and methods

We use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation, geochemical characteristics and potential long-term behaviour of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK.

Results and discussion

Cr-bearing grains within RDS and aquatic sediment are predominantly iron oxides and alumino-silicate glass grains. Electron microprobe analysis indicates Cr concentrations up to 3300 and 133,400 μg g?1 in the RDS and aquatic grains, respectively. XANES analysis indicates that Cr(III) is the dominant oxidation state, with only trace amounts of Cr(VI). Importantly, Cr speciation does not appear to have changed between sedimentary environments and the dominance of Cr(III) suggests limited bioavailability or toxicity under predominant environmental (anoxic and neutral pH) conditions in the aquatic sediment sink. Furthermore, geochemical analyses suggest the environmental mobility of Cr in the aquatic sediment sink is low (compared to other toxic metals) due to its association mainly with alumino-silicate glass grains and its inclusion as an integral part of the glass structure.

Conclusions

Industrial glass grains are a major component of urban sediment worldwide. The speciation and geochemical investigations performed in this study suggest most Cr within the urban sediment cascade may be resistant to environmental processes that could mobilise other toxic metals.
  相似文献   

20.

Purpose

Soil compaction resulting from mechanisation of forest operations reduces air permeability and hydraulic conductivity of soil and can result in the development of hydromorphic and/or anoxic conditions. These hydromorphic conditions can affect physico-chemical properties of the soils. However, early detection of these effects on mineralogical portion of soils is methodologically difficult.

Materials and methods

To analyse the effects of soil compaction on iron minerals in loamy Luvisol, three compacted and three non-compacted soil profiles up to the depth of 50 cm were collected from an artificially deforested and compacted soils after 2 years of treatment. Soil was compacted with the help of 25 Mg wheeler’s load to increase the dry bulk density of soil from 1.21?±?0.05 to 1.45?±?0.1 g cm?3. Soil samples were analysed by X-ray diffraction (XRD) and were treated by citrate bicarbonate (CB) and dithionite citrate bicarbonate (DCB) under controlled conditions. Major and minor elements (Fe, Al, Mg, Si and Mn) were analysed by ICP-AES in the CB and DCB extracts.

Results and discussion

It was found that X-ray diffraction is not an enough sensitive method to detect the quick mineralogical changes due to soil compaction. Results obtained from CB-DCB extractions showed that soil compaction resulted in larger CB and smaller DCB extractable elements as compared to non-compacted soil. Labile Fe was found 30 % of total Fe oxides in compacted soil against 10–14 % in non-compacted soils. Compaction thus resulted in Fe transfer from non-labile to labile oxides (s.l.). Results showed that soil compaction leads to the reduction of Fe3+ to Fe2+. The effects of hydromorphic conditions due to soil compaction were observed up to the depth of 35 cm in forest soil profile. Furthermore, a close association of Al with Fe oxides was observed in the soil samples, while Mn and Si were mainly released from other sources, Mg showing an intermediate behaviour.

Conclusions

Hydromorphic conditions owing to soil compaction affect the mobility and crystallisation process of iron mineral. CB-DCB selective extraction technique, in contrast to XRD technique, can be effectively used to examine the possible effects of soil compaction on iron minerals.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号