首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.), a staple crop for over 50% of the world's population, is also a source of dietary arsenic (As) because of it's efficiencyat accumulating As. Lead–arsenate pesticide was used in agriculture, these soils potentially may be used for rice production. The objective of this study was to determine the effects of compost on total and inorganic As concentrations in rice grown on lead–arsenate contaminated soils. Three lead–arsenatesoils were amended with 10% by weight of compost and planted with rice under flooded and non-flooded conditions. Rice grain yieldwas higher with compost but not flooding. Flooding significantly increased total and inorganic As concentrations. In most cases, rice inorganic Asconcentrations were higher than the limit set by Chinaat 0.2 mg kg?1. Compost at therate used did not reduce rice grain As to safe levels.Lead–arsenate contaminated soils are not recommended for rice production.  相似文献   

2.
Background, Aim and Scope.  The compositional study of suspended matter in water from rivers of different latitudes and climates has revealed that the fine fraction reflects both substrate lithology from source areas or topsoil composition along the course. Metal distribution patterns are also strongly related to the clay mineral fate in fluvial aquatic systems. For the particular case of the coastal area of the Río de la Plata estuary in South America, previous studies have, on the one hand, focused on the analysis of distribution patterns of heavy metals in bottom river sediments and, on the other hand, on the assessment of metal contents in topsoils. The present study was conducted to evaluate the Cu, Pb and Zn distribution in soils and sediments from four drainage basins crossing two differentiated geomorphologic units composed of unconsolidated materials and to understand the metal behaviour. Methods  Data used included the existent, self-produced soil and sediment data sets (grain size, organic matter and Cu, Pb and Zn contents from 124 samples). Analyses were performed by using standardised methods: grain size analysis by sieving and settling; organic matter content based on the reduction of dichromate ion followed by titration; metal content by atomic absorption spectrophotometry following acid digestion. Results and Discussion. The average (% w/w) clay and organic matter content were 45.9 ± 17.1 and 1.5 ± 1.7 for sediments and 32.0 ± 19.8, and 7.5 ± 7.6 for soils, respectively. The raw mean metal concentrations (mg-kg-1 dry weight) for sediments and soils were: Cu: 28.02 ± 27.28, 32.08 ± 21.64; Pb: 32.08 ± 46.94, 68.44 ± 69.25 and Zn: 83.09 ± 150.33, 118.22 ± 74.20, respectively. A good correlation for each clay-normalised metal concentration was found between soil and sediments using regression analysis considering average data for each basin sampling site (r > 0.89, p < 0.05). A comparison between metal concentration levels taking into account geomorphologic units by a t independent sample test showed significant differences for the normalised soil-sediment metal data (p < 0.001), responding to differences in grain size, clay mineralogy, organic matter and neoformed Fe-Mn oxide composition. Conclusion, Recommendation and Outlook  A clear parenthood between the topsoils and the bottom sediments in the study area was found. The Argiudolls from the inner zone are frequently affected by rainwater erosion, which washes the fine materials with sorbed metals and carries them to the streams. These watercourses reach the flat coastal plain, where soil flooding and bottom sediment depositional processes predominate. Here, both soils and bottom sediments are enriched in clay, organic matter and metals. The topography and lithology, under the environmental conditions of a temperate and humid climate control the fate of metals within these small basins. The influence of the physical media on the distribution and fate of pollutants should not be minimised in the understanding of the governing processes from natural systems.  相似文献   

3.
Spatial and seasonal mobilization trends of metals in surface water were evaluated in the US–Mexico San Pedro River (SPR). Water samples were collected at five sampling stations for the analysis of dissolved oxygen, pH, electric conductivity, sulfates, and metals (Cd, Cu, Fe, Mn, Pb, and Zn). Quality of the water was characterized through Ecological Criteria of Water Quality (ECWQ) established in Mexico and Water Quality Criteria (Environmental Protection Agency (EPA)). High total metal concentrations were detected as follows: Fe?>?Cu?>?Mn?>?Zn?>?Pb?>?Cd. Metal concentrations were slightly higher in dry season than in rainy season: Cd (below detection limit (BDL)–0.21 mg L?1), Cu (BDL–13 mg L?1), Fe (0.16–345 mg L?1), Mn (0.12–52 mg L?1), Pb (BDL–0.48 mg L?1), and Zn (0.03–17.8 mg L?1). Low pH and dissolved oxygen values as well as high sulfate content were detected in both seasons. High values of metals (Cd, Cu, Fe, Mn, Pb, Zn) were detected at station E1 representing pollution source, as well as at stations E2 (Cd, Cu, Fe, Mn), E3 (Fe, Mn, Pb), and E4 and E5 (Fe, Mn). Detected concentrations exceeded maximum permissible established in ECWQ and Water Quality Criteria (EPA). Efflorescence salts on sediments in the dry season could increase levels of metals in water column. This study provides valuable information on the potential mobility of metals in surface water of SPR located in an arid environment where transport processes are strongly linked to climate. The information derived from this study should help the regional and national authorities to address present environmental regulations.  相似文献   

4.
Lead arsenate has been used as pesticide. Flooding soils contaminated by lead arsenate could increase plant arsenic and lead and become a human health risk. The objective was to determine the effects of flooding of lead‐arsenate soils on rice grain yield and arsenic and lead accumulation. Bagstown and Chashmont soils with high levels of arsenic and lead were planted with rice in the greenhouse under flooded and nonflooded conditions. Flooding reduced grain yield and increased grain arsenic concentration on both soils. Grain lead decreased with flooding for the Bagstown soil but increased for the Chashmont. Arsenic and lead concentrations in the straw were more than in grain. Grain arsenic and lead levels observed would not be expected to become a human health risk. However, bioavailability studies are needed. The high arsenic and lead in the straw may indirectly become a human health risk because rice straw is used for livestock feed and bedding.  相似文献   

5.
Abstract

Two soybean varieties were grown at different P levels to test tolerance to high levels of P. When Hawkeye and PI54619–5–1 soybeans, Glycine max (L.) Merr. Bragg, were grown in solution culture with NH4 H2 PO4 increasing from 10‐4 M to 3 × 10‐2 M, yields of Hawkeye were decreased more by the highest P levels than were those of PI54619–5–1. The high P also resulted in larger concentrations of Zn, Cu, and other heavy metals in Hawkeye man in PI54619–5–1. Phosphorous concentrations were generally higher for Hawkeye than for the PI54619–5–1 soybeans. PI54619–5–1 leaves contained less of most metals than the Hawkeye.  相似文献   

6.
7.
Abstract

A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry‐season) rice (Oryza sativa) and their residual effects on the following Aman (wet‐season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L?1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L?1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L?1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 µg g?1 and its concentration in rice straw varied from 2.4 to 9.6 µg g?1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus.  相似文献   

8.
Li  Yuqian  Ma  Junwei  Xiao  Chen  Li  Yijia 《Journal of Soils and Sediments》2020,20(4):1970-1982
Purpose

Soil nutrients, elemental stoichiometry, and their associated environmental control play important roles in nutrient cycling. The objectives of this study were (1) to investigate soil nutrients and elemental stoichiometry, especially potassium and its associative elemental stoichiometry with other nutrients under different land uses in terrestrial ecosystems; (2) to discuss the impacts of climate factors, soil texture, and soil physicochemical properties; and (3) to identify the key factors on soil nutrient levels and elemental stoichiometry.

Materials and methods

Soil data, including pH, bulk density (BD), cation exchange capacity (CEC), volumetric water content (VMC), clay, silt and sand contents, total carbon (TC), nitrogen (TN), phosphorous (TP) and potassium (TK), available nitrogen (AN), phosphorus (AP), potassium (AK), and soil organic matter (SOM) under different land-use types, were collected, and their elemental stoichiometry ratios were calculated. Climate data including temperature, precipitation, relative humidity, wind speed, and evapotranspiration were collected. The least significant difference test and one-way analysis of variance were applied to investigate the variability of soil nutrients and elemental stoichiometry among land-use types; the ordinary least squares method and the general linear model were used to illustrate the correlations between soil nutrients, elemental stoichiometry, and soil properties or climate factors and to identify the key influencing factors.

Results and discussion

Woodlands had the highest SOM, TN, AN, and AK contents, followed by grasslands, croplands, and shrublands, while the TP and TK contents only varied slightly among land-use types. SOM, TN, AN, N/P, and N/K were strongly negatively correlated to soil pH (p <?0.05) and were strongly positively correlated to soil CEC (p <?0.05). For soil texture, only C/N was moderately negatively correlated to silt content but moderately positively correlated to sand content (p <?0.05). For climate factors, SOM, TN, AN, N/P, and N/K were significantly negatively correlated to evapotranspiration and temperature (p <?0.05), and the correlations were usually moderate. Soil pH explained most of the total variation in soil nutrients, and climate factors explained 5.64–28.16% of soil nutrients and elemental stoichiometry (except for AP (0.0%) and TK (68.35%)).

Conclusions

The results suggest that climate factors and soil properties both affect soil nutrients and elemental stoichiometry, and soil properties generally contribute more than climate factors to soil nutrient levels. The findings will help to improve our knowledge of nutrient flux responses to climate change while also assisting in developing management measures related to soil nutrients under conditions of climate change.

  相似文献   

9.
Journal of Soils and Sediments - Trace metals accumulate in the food web and can pose high risks to human health and aquatic biota. We investigated seasonal and spatial variations of Cu, Zn, Pb,...  相似文献   

10.
Four Scythian kurgans of the burial site Beloe Lake-3 were studied in the Turan–Uyuk Depression in the Republic of Tyva. They were constructed about 2565–2390 calendar years ago (calibrated with deviation 1 σ). Soil formation after 2500 yrs of the construction of the kurgans was examined in the interkurgan area. The properties of the background surface and ancient buried soils have much in common, and the difference between the soils of the four kurgans is small. This attests to the fact that the paleoclimatic conditions in the period of the necropolis construction remained stable and were similar to the modern climatic conditions. According to palynological data, the climate at the stage of the construction of the first two kurgans was a little more humid in comparison with the modern climate; it became somewhat drier after 95 years, during the construction of the third kurgan (2425 cal. BP) and again tended to humidification at the final stage of the necropolis creation. These changes in the paleoclimatic conditions are indicated by variations in the structure and composition of associations of xerophytes, mesophytes, hydrophytes, and ruderal plants. At the Uyuk stage, the area was mainly occupied by steppe phytocenoses with a predominance of xerophytes over mesophytes, and hydrophilous vegetation was allocated to moistened habitats near water reservoirs. Larch forests grew near water bodies. The variable anthropogenic impact on the landscape was stronger at the initial and final stages of the construction of the Uyuk culture necropolis.  相似文献   

11.

Purpose

This work explores the application of the use of Zn, Cu, and Pb relative contents as a new type of normalization method for geochemical properties of soils and sediments in an Atlantic Basin (Anllóns River, NW Spain). The method is based on the conservative behavior of these elements, which exhibit a certain concentration ratio that remains stable as long as there are no human disturbances.

Materials and methods

The average relative contents of Zn, Cu, and Pb were calculated by dividing the concentration of each metal in soils or sediments, in the <63-μm fraction, by the sum of Zn, Cu, and Pb, expressed as a percentage. The evaluation of the sum of the average relative concentrations of Zn, Cu, and Pb (Ri), together with three standard deviations for each element, namely, Ri ± 3Si, allows a hexagon to be constructed, represented in ternary diagrams of Zn:Cu:Pb. Following the method proposed by Weng et al. (Environ Geol 45:79–85, 2003), those samples falling outside the hexagon must be considered outliers.

Results and discussion

Results obtained confimed the conservative behavior between the relative contents of Zn, Cu, and Pb in surficial samples (soils, bed, and suspended sediments). Only sediment cores displayed nonconservative behavior, showing a marked Pb enrichment, with respect to the surficial samples. When Zn, Cu, and Pb relative contents were plotted in ternary diagrams, outliers were best classified when the hexagon was drawn with standard deviations of samples from the study area. The hexagon drawn with an international database of soils and sediments showed a poorer classification of outliers.

Conclusions

The results showed that total Zn, Cu, and Pb relative contents may be employed to investigate anthropogenic disturbances of these elements in soils and sediments of the Anllóns River Basin, thus corroborating that this type of normalization may be employed as a tool to assess outliers in a contaminated area.  相似文献   

12.

Purpose

This study investigated the extent of metal accumulation by plants colonizing a mining area in Yazd Province in Central Iran. It also investigated the suitability of these plants for phytoextraction and phytostabilization as two potential phytoremediation strategies.

Materials and methods

Plants with a high bioconcentration factor (BCF) and low translocation factor (TF) have the potential for phytostabilization, whereas plants with both BCFs and TFs >1 may be appropriate for phytoextraction. In this study, both shoots and roots of 40 plant species and associated soil samples were collected and analyzed for total concentrations of trace elements (Pb, Zn, and Ag). BCFs and TFs were calculated for each element.

Results and discussion

Nonnea persica, Achillea wilhelmsii, Erodium cicutarium, and Mentha longifolia were found to be the most suitable species for phytostabilization of Pb and Zn. Colchicum schimperi, Londesia eriantha, Lallemantia royleana, Bromus tectorum, Hordeum glaucum, and Thuspeinantha persica are the most promising species for element phytoextraction in sites slightly enriched by Ag. Ferula assa-foetida is the most suitable species for phytostabilization of the three studied metals. C. schimperi, L. eriantha, L. royleana, B. tectorum, M. longifolia, and T. persica accumulated Ag, albeit at low level.

Conclusions

Our preliminary study shows that some native plant species growing on this contaminated site may have potential for phytoremediation.
  相似文献   

13.

Purpose

The Turvo/Grande drainage basin (TGDB), located in the northwestern region of S?o Paulo state, covers an area of 15,983?km2. The region is typically regarded as agricultural by the S?o Paulo State Environmental Agency, but the industrial area is expanding, and some studies have shown that metal concentrations in water can be higher than the values regulated by Brazilian law. Therefore, the aim of this study was to assess the role of sediments as a source or a sink of metals for drainage basin management.

Materials and methods

Interstitial water from different sediment depths (0?C42?cm) and the sediment?Cwater interface and sediment core samples were collected in February and July 2010 from the Preto, Turvo, and Grande rivers. Quantification of Cr, Cu, Fe, Mn, Ni, and Pb in these samples was performed by graphite furnace or flame atomic absorption spectrometry. Metal diffusive flux estimation from sediment into the overlying water was calculated by Fick??s First Law of Diffusion.

Results and discussion

The fluxes of all metals for the three rivers were positive, indicating diffusion into the overlying water. Ni and Pb showed the lowest diffusive fluxes, which ranged from 2.4 to 3,978???g?m?2?day?1 for Ni and from ?0.1 to 1,597???g?m?2?day?1 for Pb. In turn, Cu and Cr were subject to the largest transfer to water, especially in the dry season (Cr, 4.5?C7,673???g?m?2?day?1; Cu, 1.3?C14,145???g?m?2?day?1). The Preto River (urban area) showed smaller fluxes than the Grande River (agricultural area), and the values of the latter were higher than those found in other impacted areas of the world.

Conclusions

The diffusive fluxes indicate that sediments from the TGDB act as a source of metals for the water column, with increased export of metals, particularly Cr and Ni, from the sediment into the overlying water during the dry season.  相似文献   

14.
Abstract

Lead arsenate was extensively used to control insects in apple and plum orchards in the 1900s. Continuous use of lead arsenate resulted in elevated soil levels of lead (Pb) and arsenic (As). There are concerns that As and Pb will become solubilized upon a change in land use. In situ chemical stabilization practices, such as the use of phosphate‐phosphorus (P), have been investigated as a possible method for reducing the solubility, mobility, and potential toxicity of Pb and As in these soils. The objective of this study was to determine the effectiveness of calcium carbonate (lime), P, and iron (Fe) amendments in reducing the solubility of As and Pb in lead‐arsenate‐treated soils over time. Under controlled conditions, two orchard soils, Thurmont loam (Hapludults) and Burch loam (Haploxerolls), were amended with reagent‐grade calcium carbonate (CaCO3), iron hydroxide [Fe(OH)3], and potassium phosphate (KH2PO4) and incubated for 16 weeks at 26°C. The experimental results suggested that the inorganic P increased competitive sorption between H2PO4 ? and dihydrogen arsenate (H2AsO4 ?), resulting in greater desorption of As in both Thurmont and Burch soils. Therefore, addition of lime, potassium phosphate, and Fe to lead‐arsenate‐contaminated soils could increase the risk of loss of soluble As and Pb from surface soil and potentially increase these metal species in runoff and movement to groundwater.  相似文献   

15.
The arsenic contamination of Bangladesh groundwater involves heavy arsenic inputs to irrigated rice fields. Beside adsorption on soil colloids, iron–arsenic co-precipitation phenomena can affect arsenic retention in soils. In paddy fields of Satkhira District, Bangladesh, the study of the arsenic and iron forms in the irrigation waters and in soils at different times and distances from the irrigation well evidenced that a higher Fe/As ratio in the well water was related to a faster oxidation of Fe(II) and As(III) in water and to a close Fe–As association in soils, together with a greater accumulation of arsenic and poorly ordered iron oxides. The concentration of arsenic and of labile iron forms decreased with the distance from the well and with the depth, as well as the reversibility of arsenic binding. The fate of the arsenic added to the soils by irrigation hence resulted strongly influenced by iron–arsenic co-precipitation, depending on the Fe/As ratio in water. Irrigation systems favouring the sedimentation of the Fe–As flocks could help in protecting the rice from the adverse effects of dissolved arsenic.  相似文献   

16.

Purpose

This study aimed at investigating correlations between heavy metal concentrations in mosses and modelled deposition values as well as other site-specific and regional characteristics to determine which factors primarily affect cadmium, lead and mercury concentrations in mosses. The resulting relationships could potentially be used to enhance the spatial resolution of heavy metal deposition maps across Europe.

Materials and methods

Modelled heavy metal deposition data and data on the concentration of heavy metals in naturally growing mosses were integrated into a geographic information system and analysed by means of bivariate rank correlation analysis and multivariate decision trees. Modelled deposition data were validated annually with deposition measurements at up to 63 EMEP measurement stations within the European Monitoring and Evaluation Programme (EMEP), and mosses were collected at up to 7,000 sites at 5-year intervals between 1990 and 2005.

Results and discussion

Moderate to high correlations were found between cadmium and lead concentrations in mosses and modelled atmospheric deposition of these metals: Spearman rank correlation coefficients were between 0.62 and 0.67, and 0.67 and 0.73 for cadmium and lead, respectively (p?<?0.001). Multivariate decision tree analyses showed that cadmium and lead concentrations in mosses were primarily determined by the atmospheric deposition of these metals, followed by emissions of the metals. Low to very low correlations were observed between mercury concentrations in mosses and modelled atmospheric deposition of mercury. According to the multivariate analyses, spatial variations of the mercury concentration in mosses was primarily associated with the sampled moss species and not with the modelled deposition, but regional differences in the atmospheric chemistry of mercury and corresponding interactions with the moss may also be involved.

Conclusions

At least for cadmium and lead, concentrations in mosses are a valuable tool in determining and mapping the spatial variation in atmospheric deposition across Europe at a high spatial resolution. For mercury, more studies are needed to elucidate interactions of different chemical species with the moss.  相似文献   

17.
Journal of Soils and Sediments - Article with DOI 10.1007/s11368-018-2062-8, written by N. L. B. Kouassi et al., was originally published electronically on SpringerLink on 23 June 2018 with open...  相似文献   

18.
Journal of Soils and Sediments - The aim of the study was to (1) investigate the distributions of sulfur (S), iron (Fe), and phosphorus (P) in coastal surface sediments under the stresses of high...  相似文献   

19.
Eurasian Soil Science - To determine the distribution, migration, and accumulation characteristics of heavy metal pollution in the Youjiang River basin in South China, 71 shallow soil samples were...  相似文献   

20.
Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It is important to understand the controlling factors on soil N cycling in these ecosystems. To evaluate climate effects on N cycling, soil N mineralization and nitrification rates (0–15 cm) were measured using an in situ closed-top tube incubation across altitudes and positions from 2006 to 2008 in alpine meadows. The data indicated that soil N mineralization and nitrification rates decreased with increasing altitude, but only significantly (P < 0.05) between the lowest and the two higher altitudes. Soil N mineralization and nitrification rates of south-facing slopes were higher than north-facing slopes at each altitude. This suggests that soil temperature and soil water content (WC) were the controlling factors for soil N mineralization and nitrification rates across altitude with soil WC being the most important factors over positions. Soil nitrification rate depended on soil N mineralization rate, and both rates may increase in response to regional warming of the alpine meadow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号