首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

A study was carried out to evaluate the concentration of heavy metals (Pb, Cu, Cr, Cd, and Hg) and total petroleum hydrocarbons (TPH) in road-deposited sediments (RDS) from Tijuana, Mexico, and identify their possible sources.

Materials and methods

Thirty RDS samples were randomly collected during the dry season using a brush and dustpan and classified according to construction material, traffic intensity, and land use. Soil samples were collected from a nonurban area and their concentrations were used as background values. For TPH, the samples were quantified gravimetrically after Soxhlet extraction, whereas heavy metals were extracted by acid digestion and their concentrations were measured by atomic absorption spectrometry.

Results and discussion

The mean TPH concentrations for RDS were 4208 mg kg?1 and ranged from 1186 to 9982 mg kg?1. For heavy metals, mean concentrations were 31.8, 50.2, 17.1, 0.1, and 0.1 mg kg?1 for Pb, Cu, Cr, Cd, and Hg, respectively. The Igeo results showed that RDS from Tijuana are moderately to strongly polluted with Pb and Cu and moderately polluted with Cr. Principal component analysis (PCA) showed that Pb, Cu, and Cr could have their origin in tire wear, brake pads, bearings, and bushings.

Conclusions

The findings of this study revealed that RDS from Tijuana are polluted with TPH and heavy metals and that their principal sources are anthropogenic activities.
  相似文献   

2.

Purpose

Quarrying activities in areas with serpentinized rocks may have a negative impact on plant growth. Quarry soils generally offer hostile environments for plant growth due to their low-nutrient availability, low organic matter, and high-trace metal content.

Materials and methods

In order to determine the factors that can limit plant revegetation, this study was carried out in two serpentine quarries in Galicia (NW Spain): one abandoned in 1999 and the other still active.

Results and discussion

The results show that in soils developed in the abandoned quarry, the limitations for revegetation were: moderate alkaline pH (7.87–8.05), strong Ca/Mg (<1) imbalance, low N (<0.42 mg kg?1) and P (<2 mg kg?1) content, and high total heavy-metal content (Co 76–147 mg kg?1; Cr 1370–2600 mg kg?1; and Ni 1340–2040 mg kg?1). The limitations were much less intense in the soils developed in the substratum in the active quarry, which were incipient soils poorly developed and permanently affected by the quarrying activity.

Conclusions

Restoration work should be geared toward establishing a stable diverse vegetation cover, including serpentinophile species, which would provide the necessary modifications to correct nutritive imbalances and improve soil quality.
  相似文献   

3.

Purpose

The main objectives of the study were to (1) develop a one-step facile procedure for synthesizing a new chemical amendment agent with three chelating groups for solidifying multiple heavy metals, called sixthio guanidine acid (SGA), using guanidine hydrochloride and carbon disulfide as raw reactants and (2) assess its biodegradability, solidification effectiveness, and leachability in remedying soils contaminated with multiple heavy metals of various concentrations compared with other traditional amendment agents.

Materials and methods

Polluted soil samples were collected near a metalliferous mining site of Qixiashan in the southeast of Nanjing, China. Their concentrations were determined at 22.15–320 mg kg?1 for As, 3.30–29.31 mg kg?1 for Cd, 115.66–158.65 mg kg?1 for Ni, 165.04–1677.06 mg kg?1 for Pb, and 355.6–2426.91 mg kg?1 for Zn. Biodegradability of SGA was assessed in accordance with GB/T 21831-2008 and OECD-301D. Total concentration of heavy metals was determined according to ISO11466:1995. A modified three-step sequential Community Bureau of Reference (BCR) extraction procedure was used to examine speciation of heavy metals in the soil sample, and concentrations of heavy metals were measured by using inductively coupling plasma optical emission spectrometry (ICP-OES). Leachate extraction tests were carried out before and after the soil sample was solidified with different amendments in accordance with HJ/T 557-2009.

Results and discussion

It is found that the optimal conditions for SGA synthesis are a molar ratio of 4:1, a reaction temperature of 40 °C, and a reaction time of 2 h. Under such conditions, SGA yield is achieved as high as 91.5 %. The bioavailability and mobility of As, Cd, Ni, Pb, and Zn in highly contaminated soils can be reduced via using SGA. Our results indicate that SGA is nonbiodegradative and much more effective than other traditional chemical amendment agents in that it is highly effective in comprehensively solidifying As, Cd, Ni, and Pb.

Conclusions

SGA has the potential for comprehensive in situ remediation of soils contaminated with several heavy metal elements of various concentration levels, and such findings may be used as a guide to design new chemical amendment agents for rehabilitating soils contaminated with heavy metals.
  相似文献   

4.

Purpose

Inorganic contaminants present a major challenge for the restoration of aquatic ecosystems. The objectives of this study were to determine the extent of trace metal contamination and investigate the influence of different plant communities on trace metal accumulation in the soils of the Florida Everglades.

Materials and methods

Soil samples (n?=?117) were collected from 0 to 10-cm depth using a stainless steel coring device from sites with three dominant plant communities—cattail, sawgrass, and slough—of Water Conservation Area-2A (43,281 ha) of Florida Everglades.

Results and discussion

The mean pH in soils collected from three plant communities was 6.75–6.82, whereas electrical conductivity was slightly greater in the sawgrass (0.69 dS m?1) than cattail (0.58 dS m?1) and slough (0.40 dS m?1). Mean reduction–oxidation potential was greatest in cattail (?113 mV) than sawgrass (?85.3 mV) and slough (?48.3 mV) soils. Among 11 trace metals (As, B, Co, Cr, Cu, Mn, Mo, Na, Ni, Pb, Zn) found in soil samples, Na had the greatest contents and was greater in cattail (2070 mg kg?1) and sawgrass (1735 mg kg?1) than slough (1297 mg kg?1). Four trace metals (B, Cu, Mo, Ni) were significantly greater in cattail than sawgrass and slough. Whereas, Mn was significantly lower in cattail (31 mg kg?1) than both sawgrass (84 mg kg?1) and slough (51 mg kg?1). Cattail also had significantly lower Cr (1.97 mg kg?1) and Pb (10 mg kg?1) than sawgrass (Cr 2.5 mg kg?1; Pb 20.8 mg kg?1). As (<6.9 mg kg?1), Co (<1.3 mg kg?1), and Zn (<17.2 mg kg?1) were not significantly different among soils collected from three plant community-dominant sites. Contents of Cd and Se were below the method detection limits (Cd 0.01 mg L?1; Se 0.2 mg L?1) and are not reported.

Conclusions

None of the trace metals in the soils exceeded the US Environmental Protection Agency sediment toxicity thresholds. Results from this study provided baseline concentrations of trace metals, which can be used to measure the success of restoration efforts in Florida Everglades.
  相似文献   

5.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

6.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

7.

Purpose

Manchester is often heralded as the first industrial city. Large volumes of physical and liquid contaminants were released into its river network throughout the industrial period up to the latter part of the twentieth century. Water quality has improved dramatically in recent decades, but, given their environmental significance, it is important to ascertain the extent to which a legacy of contamination persists in the modern bed sediments.

Materials and methods

Fine-grained bed sediments were sampled at 40 sites in the Mersey and Irwell catchments. Sediments were wet sieved to isolate the <63-μm grain size fraction. Metal concentrations were determined using XRF. Particle size characteristics were also measured. Sediments were subjected to a five-step sequential extraction procedure to ascertain the environmental significance of metal concentrations. Alongside archival research of past industry, enrichment factors, multivariate statistical techniques and conditional inferences trees were used to identify sources of heavy metals.

Results and discussion

Bed sediment-associated heavy metal(loid) concentrations were as follows: As (9.89–110 mg kg?1), Cr (76.5–413 mg kg?1), Cu (53.1–383 mg kg?1), Pb (80.4–442 mg kg?1) and Zn (282–1020 mg kg?1). Enrichment factors ranged from moderate to extremely severe, with Pb showing the greatest enrichment across the catchments. Chemical mobility was generally low, but metal(loid) partitioning identified the influence of anthropogenic sources. Statistical analysis highlighted a number of point sources associated with former industrial sites that operated during the industrial period. Conditional inference trees highlighted the role of the textile industry on Cu concentrations in addition to indicating the complexity of sources, fluxes and stores of sediment-associated contamination throughout the system.

Conclusions

Fine-grained sediment-associated metal(loid)s in the Mersey and Irwell catchments are anthropogenically enriched. Concentrations also exceed sediment quality guidelines. A lack of distinct spatial patterning points to a complex network of contaminant inputs across the catchments, even in the headwaters. Whilst potential modern urban sources are likely to be important, spatial patterns and multivariate/data mining techniques also highlighted the importance of releases from former industrial sites as well as the reworking of historically contaminated floodplains and soils.
  相似文献   

8.

Purpose

The effects of municipal sludge compost (MSC) as a soil amendment are often studied in agricultural soil or topsoil contaminated with heavy metals. However, little is known about the effects of MSC amendments on plant growth and heavy metal bioavailability in subsoil. This study was conducted to investigate the effects of MSC application on plant growth and the mobility and bioavailability of Cd, Cu, and Zn in an amended soil-plant system.

Materials and methods

A pot experiment was performed to evaluate the translocation of heavy metals to broad bean (Vicia faba L.) grown in loess subsoil previously amended with different application rates of MSC. The subsoil and MSC were homogeneously mixed to achieve six soil-amended treatments (total weight of 8 kg in each pot) in 0, 0.5, 2, 6, 15, and 30% mass ratios (MSC/total). Soil samples amended with MSC were aged for 60 days before sowing. Soil and plant samples were collected after 120 days of growth. Plant height was periodically measured until harvest. The total quantities of heavy metals and their different fractions were analyzed by using graphite furnace atomic absorption spectroscopy (GF-AAS).

Results and discussion

Compared with the control soil (0% treatment), the average biomass growth rates from the 0.5 to 30% treatments ranged from 14.5 to 170.4% (increasing order), respectively. Cd (0.42–1.85 mg kg?1) and Cu (14.95–23.01 mg kg?1) mainly concentrated in the plant roots, and Zn (22.06–36.48 mg kg?1) mainly concentrated in the plant stems and leaves. Fortunately, the metal concentrations in the edible plant parts (0.03–0.1 mg kg?1) remained below the Chinese national standard thresholds (0.2 mg kg?1), possibly because of the alkaline soil pH (8.60–7.74), organic matter (7.4–65.9 g kg?1) bound to metals, and translocation of less metal to the edible plant parts by biochemical modulation.

Conclusions

MSC can enhance subsoil fertility and promote plant development, especially in the 30% treatment. The mobility and bioavailability of heavy metals suggest that Cd is the element needing to be monitored during MSC application. High organic matter content and alkaline pH are the most important factors for controlling Cd levels. More work is required to determine the long-term impacts of sludge amendment on the soil and environment.
  相似文献   

9.

Purpose

Cadmium (Cd) is considered a toxic element and its concentrations are relevant to human health and the environment. Therefore, the purpose of the study was to determine the extent to which the bottom sediments of water bodies (artificial lakes and ponds) in the Silesian Upland in southern Poland are contaminated with Cd; an attempt was also made to determine the factors that condition spatial differences in the concentration of this element between individual water bodies in the region.

Materials and methods

Measurements of the Cd content in bottom sediments were carried out in 35 water bodies in southern Poland in 2011 and 2012. Depending on the surface area and morphometric characteristics, from two to nine samples representative in terms of sediment thickness were collected in each water body. Cadmium concentrations were determined for 92 0.25 g aliquots using the TD-ICP method.

Results and discussion

Cadmium content in all samples (0.7–580.0 mg kg?1) was higher than the natural range of concentrations for this element in the Earth’s crust (0.1–0.3 mg kg?1) and the geochemical background for Poland (0.5 mg kg?1) and, with a few exceptions, was also higher than the preindustrial concentration (1.0 mg kg?1) and the regional geochemical background (2.5 mg kg?1). Adopting natural Cd concentrations in the Earth’s crust (0.1–0.3 mg kg?1) as the baseline for the geoaccumulation index (Igeo), the sediments examined can be classified as extremely and heavily contaminated (and moderately contaminated in a small number of cases). The assessment of sediment quality based on Igeo, with the regional geochemical background (2.5 mg kg?1) adopted as the baseline, results in non-contaminated and moderately contaminated sediments being dominant with a far smaller number of heavily and extremely contaminated ones.

Conclusions

In the case of several water bodies, Cd concentrations were at record levels that have not been found anywhere else in the world. On the basis of the Igeo, sediments of varying quality were found—from virtually uncontaminated to extremely contaminated. The Igeo index as an indicator of the quality of bottom sediments is a measure that requires careful interpretation, especially when different concentration levels regarded as natural are used for determining its value.
  相似文献   

10.

Purpose

Cadmium (Cd) is regarded as one of the most toxic heavy metals in the environment and can undermine the ecosystem function and human health at trace level due to its high toxicity. In order to reduce the anthropogenic Cd input into agricultural soil, it is of utmost importance to pinpoint the sources of Cd in soils and apportion their respective contributions.

Materials and methods

One hundred twenty-seven topsoil samples and 21 subsoil samples were collected from croplands of Meishan Basin, Changxing County, Zhejiang Province, Eastern China, and analyzed for concentrations of Cd and other heavy metals. Finite mixture distribution model (FMDM) was employed to fit the data to obtain the local soil Cd threshold value, a critical indicator to assess soil heavy metal contamination. Then, principal component analysis (PCA) and geographic information system (GIS) were used to identify the potential sources of Cd. Finally, positive matrix factorization (PMF) was applied to apportion the source contributions.

Results and discussion

Among the 127 topsoil samples, 71 were subject to Cd contamination with a mean concentration of 0.66 mg kg?1 while the others were considered as background with a lower mean concentration of 0.145 mg kg?1, close to the local background concentration of 0.142 mg kg?1. Further, three components were extracted by PCA and interpreted as natural background, lead-acid battery manufacturing plants, and construction material associated activities, respectively. Additionally, most of the topsoil samples around the lead-acid battery manufacturing plants, construction material plants, and limestone/marble quarries were classified as Cd contaminated. However, PMF failed to get a successful portioning.

Conclusions

Lead-acid battery manufacturing plants and construction material associated activities were the main anthropogenic sources of soil Cd contamination. With the help of FMDM, it is possible to distinguish the contaminated soil and estimate the contribution of anthropogenic sources to soil Cd. The apportionment by PMF was not successful in this paper due to the high skewness or outliers of Cd concentration in sampling sites and violation of the assumption that all samples have the same sources.
  相似文献   

11.

Purpose

The objectives of this study were (1) to determine the concentrations and background concentrations of Ba, Co, Cr, Mn, and Ni in the urban soils of Talcahuano (Chile); (2) assess the level of contamination in the urban soils based on different pollution indexes; and (3) to identify natural or anthropogenic sources in order to obtain a spatial distribution of the pollutants.

Material and methods

A total of 420 samples were collected from the study area as follows: 140 topsoil samples (TS) (0–10 cm), 140 subsoil samples (SS) (10–20 cm), and 140 deep soil samples (DS) (150 cm). The soils were characterized, and the concentrations of Ba, Co, Cr, Mn, and Ni were analyzed by atomic absorption photospectrometry following aqua regia digestion. Correlations and principal component analysis combined with spatial analysis were implemented in order to distinguish the sources and their classification as geogenic or anthropogenic. Several simple and robust statistical methods were applied to datasets in order to explore their potential in the evaluation of a useful and robust background values. The degree of contamination along with the geoaccumulation index, enrichment factor, and contamination factor were also evaluated.

Results and discussion

The median concentrations obtained for various elements includes Ba 461 mg kg?1, Co 82.7 mg kg?1, Cr 134 mg kg?1, Mn 311 mg kg?1, and Ni 56.1 mg kg?1. In general, the concentrations of Ba, Co, Cr, Mn, and Ni decrease with depth. Correlations and principal component analysis suggest that Cr, Mn, and Ni are contributed by external sources. The spatial distribution of Cr, Mn, and Ni in TS displays a spatial pattern extending along industrial environments and emission sources.

Conclusions

The estimated background values determined with the iterative 2σ-technique includes 536 mg kg?1 for Ba, 95.9 mg kg?1 for Co, 208 mg kg?1 for Cr, 464 mg kg?1 for Mn, and 90.5 mg kg?1 for Ni. The geochemical index, enrichment factor, and the contamination factor register a moderate to considerable contamination in some soil samples.
  相似文献   

12.

Purpose

Chlorothalonil (CTN) has received much attention due to its broad-spectrum antifungal function and repeated applications in agriculture production practice. An incubation experiment was conducted to study the accumulating effects of CTN repeated application on soil microbial activities, biomass, and community and to contrast the discrepancy of effects in contrasting soils.

Materials and methods

Different dosage CTN (5 mg kg?1, T1, and 25 mg kg?1, T5) was applied into two contrasting soils at 7-day intervals. Soil samples were taken 7 days after each application to assess soil enzyme activities and gene abundances. At the end of incubation, the soil samples were also taken to analyze microbial communities in the two test soils.

Results and discussion

Soil fluorescein diacetate hydrolysis (FDAH) and urease activities were inhibited by CTN repeated applications. After 28 days of incubation, bacterial 16S rRNA gene abundances in T1 and T5 treatments were significantly lower than those in the CK treatments (46.4 and 36.6 % of the CK treatment in acidic red soil, 53.6 and 37.9 % of the CK treatment in paddy soil). Archaeal 16S rRNA gene abundances of T1 and T5 treatments were observed the similar trends (56.1 and 40.8 % of the CK treatment in acidic red soil, 45.6 and 43.7 % of the CK treatment in paddy soil). Repeated applications at 25 mg kg?1 exerted significantly negative effects on the Shannon-Weaver, Simpson and McIntosh indices.

Conclusions

Microbial activity, biomass, and functional diversity were significantly inhibited by repeated CTN application at the higher dosage (25 mg kg?1), but the inhibitory effects by the application at the recommended dosage (5 mg kg?1) were erratic. More emphasis needs to be placed on the soil type and cumulative toxicity from repeated CTN application when assessing environmental risk.
  相似文献   

13.

Purpose

The aim of this study was to obtain a complete picture of the geochemical character of the sediment in the eastern Posavina region, Serbia, an area which has thus far not been systematically investigated. Geological mapping and impact assessment were thus carried out for this area.

Materials and methods

Sediments were sampled (from 0 to 0.5 m depth) in four locations in eastern Posavina between 2002 and 2014. Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg) and a wide variety of organic parameters (16 EPA polycyclic aromatic hydrocarbons (PAHs), mineral oils, selected pesticides and polychlorinated biphenyls (PCBs)) were monitored. Metals were analysed by flame and graphite atomic absorption spectrometry, and gas chromatography with mass detection was used for the PAH analyses. The origins of the monitored substances were classified using geoaccumulation index (I geo), ecological risk index (RI) and principal component analysis (PCA/FA).

Results and discussion

The sediments all contained higher heavy metals concentrations than the upper continental crust (UCC), suggesting dynamic natural and anthropogenic processes in this unique region. Significant variations (RSD values from 13 to 190) were observed for Cd (0.001–80.00 mg kg?1), Hg (0.01–5.40 mg kg?1), mineral oil (2.00–1851 mg kg?1) and the sum of 16 EPA PAHs (0.003–5.57 mg kg?1). The I geo index classified the pollution risk due to Cr as strong, Cd, Zn and Hg as moderate to strong and Ni as moderate. Based on PCA/FA analysis, the parameters were grouped somewhat differently, with anthropogenic activity found to be responsible for much of the Hg, Cd and Cr pollution present in the sediments.

Conclusions

The analysis revealed eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), the sum of 16 EPA PAHs and mineral oil as parameters of great interest for this unique region. These parameters must be the focus of future monitoring programs, in support of appropriate remediation techniques and/or dredging activities, which are required in order to comply with the new Serbian regulations and the relevant EU recommendations.
  相似文献   

14.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

15.

Purpose

Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil.

Materials and methods

A Cu-contaminated sandy soil (338 mg Cu kg?1) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg?1). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined.

Results and discussion

The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg?1, only when CMB dose was 10 %.

Conclusions

The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
  相似文献   

16.

Purpose

Particularly in organic viticulture, copper compounds are intentionally released into the environment as fungicide, whereas uranium originates from conventional phosphate fertilization. Both activities contribute to the metal contamination in wine-growing areas. This pilot study aimed to better understand how soil properties influence the presence and environmental fate of copper and uranium with respect to viticultural management.

Materials and methods

We characterized metal binding forms, i.e., their association with different soil constituents, in organically and conventionally cultivated vineyard soils and adjacent upstream and downstream sediments. The available metal fraction and the fractions associated with manganese oxides, organic matter, iron oxides, and total contents were extracted sequentially.

Results and discussion

Total soil copper ranged from 200 to 1600 mg kg?1 with higher contents in topsoil than subsoil. The majority of copper (42–82%) was bound to soil organic matter. In all fractions, copper contents were up to 2-fold higher in organic than in conventional vineyards, whereas the sediment concentrations were independent of the adjacent viticultural management. A net increase of copper in downstream sediments was found only when water-extractable organic carbon (WEOC) in an adjacent vineyard was elevated. With 11 ± 1 mg kg?1, total uranium was 25% higher in conventional than in organic vineyard soils. Its affinity to iron or WEOC potentially rendered uranium mobile leading to a substantial discharge to downstream sediments.

Conclusions

Translocation of copper and uranium from vineyards into adjacent stream sediments may rather be attributed to WEOC and iron contents than the viticultural management. Follow-up studies should scrutinize the processes driving metal availability and transport as well as their interaction at the aquatic–terrestrial interface.
  相似文献   

17.

Purpose

Soil restoration is still mainly carried out ex situ by excavating and replacing the contaminated soil. In situ remediation would reduce the costs of soil transportation and this way, the problem is not merely transferred elsewhere. The present study introduces a field case where the aged, oil-contaminated soil in a former fuel station in Finland was treated in situ sequentially with different methods.

Materials and methods

Several approaches, including soil vapor extraction and biostimulation with electrokinetic pumping, were performed in the field. After these treatments, the dense original portion of the soil beneath the gasoline pump location, ca 100 m3, was still contaminated with petroleum-derived volatile organic compounds (VOCs), with concentrations of nearly 10,000 mg kg?1 measured at some hotspots. After a period of electroosmotic water circulation, the electrical field (0.5 V cm?1, DC) was kept connected for 6 months without addition of water, leading to dewatering and warming of the soil.

Results and discussion

In contrast to the situation with the original wet soil, VOCs, in lab conditions, were found to volatilize very efficiently from the dewatered soil. When the soil vapor extraction treatment was renewed using perforated tubing installed horizontally at ca 1 m depth in the dewatered soil at the contaminated site, the treatment was efficient and the soil was decontaminated in 5 months. The final VOC concentrations were on average 190 mg kg?1 (n = 13) with the highest value of 700 mg kg?1 at one hotspot. After a risk evaluation, the site was concluded to be sufficiently clean for industrial use.

Conclusions

Since with many former fuel stations, the contamination consists of both volatile fractions that are difficult to degrade by biological means and heavier compounds for which biostimulation is often suitable, a combination of different methods may be worth pursuing.
  相似文献   

18.

Purpose

In view that soils are bodies and that processes such as storage and release of water, carbon, nutrients and pollutants, and aeration and rooting happen in these bodies, it is of interest to know the density of elements and compounds in soils. On the basis of soil bulk and element density of organic carbon (OC), N, and heavy metals in soils and of horizon thickness, stocks of these elements for garden soils were calculated.

Materials and methods

Fourteen gardens in four allotments of the northwestern part of the Ruhr area, Germany were investigated. The research included 14 vegetable patches, 13 lawns, 2 compost heaps, and 1 meadow. Volume samples were taken. The soil analysis included pH, soil bulk density, and OC, N, Pb, Cd, Zn, Cu, and Ni contents.

Results and discussion

The soils were from sandy loam to loamy sand. The pH was slightly acid and C/N ratio about 20. Soil bulk density was between 0.8 and 1.4 g cm?3 and mean bulk density was 1.1 g cm?3. Mean OC content was for compost 7.4 %, vegetable patches 5.2 % (0–30 cm depth), and lawns and meadow 5.8 and 5.2 % (0–5 cm depth). OC density for compost was 76 mg cm?3, vegetable patches 56 mg cm?3, and lawns 67 mg cm?3 (0–5 cm). Mean OC stock in 0–30 cm soil depth in vegetable patches was 16.4 kg m?2, lawns 15.5 kg m?2, and meadow 11.1 kg m?2. N contents were between 0.06 and 0.46 %. For compost, the mean was 0.39 %, vegetable patches 0.27 % (0–30 cm), lawn 0.28 %, and meadow 0.26 % (0–5 cm). Mean stock of N in 0–30 cm depth for vegetable patches was 0.84 kg m?2, lawn 0.76 kg m?2, and meadow 0.55 kg m?2. For heavy metals in compost, vegetable patches, lawn and meadow, Cd contents were in the range of 1.7 to 3.0 mg kg?1, Pb 49 to 152 mg kg?1, and Zn 52 to 1830 mg kg?1. The amounts stored per square meters in 30 cm depth were for Cd 0.6–1.1 g, Pb 15–52 g, Zn 41–440 g, Cu 4–39 g, and Ni 1–8 g.

Conclusions

Allotment gardens have a high capacity to store CO2 as OC. Roughly, there will be 7–8 million tons of OC stored in the 1.3 million allotment gardens of Germany. The high amount of 8000 kg N ha?1 could damage the groundwater when released by wrong soil management. Cd, Zn, Pb, Cu, and Ni amounts of 7.8, 1000, 300, 135, and 30 kg ha?1, respectively, are a lasting burden.
  相似文献   

19.

Purpose

A simple and highly efficient economic method for the analysis of 11 antibacterial drugs including two tetracyclines, three quinolones, four sulfonamides, chloramphenicol and tylosin, in livestock manure, was developed using solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC).

Materials and methods

The analytes were successively extracted by EDTA-McIlvaine solution and organic solvent mixture. The extracts were degreased with n-hexane and cleaned through SPE on a hydrophile-lipophile balance (HLB) cartridge. All compounds were determined on a C18 reverse phase column with gradient elution.

Results and discussion

Recoveries calculated from spiked samples of animal manures ranged from 62.65 to 99.16 % for 11 antibiotics with relative standard deviations of less than 10.0 %. Limits of detection ranged from 0.1 to 1.9 μg kg?1, and limits of quantification ranged from 0.3 to 5.9 μg kg?1.

Conclusions

The results show that SPE-HPLC is an inexpensive and practical method for rapid detection of multiple antibiotics in animal manure.
  相似文献   

20.

Purpose

This work studies the implications of different traffic patterns for heavy metal and solid pollution generation processes following rainfall events with contrasting antecedent meteorological conditions, at a periurban catchment. The aim is to provide information on the pollution processes and their potential environmental impacts for urban areas.

Materials and methods

Seven campaigns were performed covering winter, spring, and summer conditions, for rainfall events with different antecedent conditions. Four types of roads were monitored: low traffic, average traffic, heavy traffic with demanding driving situations (break and turning), and heavy traffic with high vehicle speed (motorway profile). Samples were taken at the beginning, middle and end of the events to measure within event variation in concentration. Analytical standard procedures were used to quantify pH, conductivity, turbidity, total solids, volatile solids, suspended solids, volatile suspended solids and heavy metals (Cd, Cu, Pb and Zn) in the total and dissolved forms (as to infer the particulate fraction), namely copper, zinc, cadmium and lead.

Results and discussion

The collected data show a direct relation among the number of vehicles and/or the driving manoeuvres performed by them and the amount of solids and heavy metals present in the wash out overland flow collected. An important fraction of the heavy metals is washed off in the particulate form, which represents an increased problem since the road overland flow is directed to green/brown areas and for the local aquatic ecosystems. Maximum copper values recorded exceed 0.6 mh L?1, zinc exceeds 5 mg L?1, lead 0.1 mg L?1 and cadmium 0.01 mg L?1. Values are higher after long dry spells and reduce concentration throughout the rainfall events.

Conclusions

An important part of the heavy metals (with relevance for zinc and lead) are washed off in the particulate form, pollutants are typically related to the amount of traffic, and especially to the existence of driving manoeuvres. The summer events show the highest values, due to the accumulation of pollutants during the long dry spells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号